Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxidative cleavage of C–C bonds in lignin

Abstract

Lignin is an aromatic polymer that constitutes up to 30 wt% of woody biomass and is considered the largest source of renewable aromatics. Valorization of the lignin stream is pivotal for making biorefining sustainable. Monomeric units in lignin are bound via C–O and C–C bonds. The majority of existing methods for the production of valuable compounds from lignin are based on the depolymerization of lignin via cleavage of relatively labile C–O bonds within lignin structure, which leads to yields of only 36–40 wt%. The remaining fraction (60 wt%) is a complex mixture of high-molecular-weight lignin, generally left unvalorized. Here we present a method to produce additional valuable monomers from the high-molecular-weight lignin fraction through oxidative C–C bond cleavage. This oxidation reaction proceeds with a high selectivity to give 2,6-dimethoxybenzoquinone (DMBQ) from high-molecular-weight lignin in 18 wt% yield, thus increasing the yield of monomers by 32%. This is an important step to make biorefining competitive with petroleum-based refineries.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Valorization strategy of woody biomass.
Fig. 2: Oxidation of lignin model compounds.
Fig. 3: Mechanistic studies of the oxidation of model compound 1.
Fig. 4: Mechanistic studies of the oxidation of model compound 2.
Fig. 5: Oxidation of a mixture of dimers and oligomers obtained after pulping of birch wood.

Data availability

The data that support the plots within this paper and other findings of this study, such as 1H NMR, 13C NMR and HPLC spectra, as well as experimental procedures and quantum chemical calculations are available in the Supplementary Information.

References

  1. Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215 (2016).

    CAS  Article  Google Scholar 

  2. Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).

    CAS  PubMed  Article  Google Scholar 

  3. Abdelaziz, O. Y. et al. Biological valorization of low molecular weight lignin. Biotechnol. Adv. 34, 1318–1346 (2016).

    CAS  PubMed  Article  Google Scholar 

  4. Bajwa, D. S., Pourhashem, G., Ullah, A. H. & Bajwa, S. G. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 139, 111526 (2019).

    CAS  Article  Google Scholar 

  5. Sun, Z., Fridrich, B., de Santi, A., Elangovan, S. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).

    CAS  PubMed  Article  Google Scholar 

  7. Renders, T., Van den Bosch, S., Koelewijn, S. F., Schutyser, W. & Sels, B. F. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 10, 1551–1557 (2017).

    CAS  Article  Google Scholar 

  8. Galkin, M. V. & Samec, J. S. Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9, 1544–1558 (2016).

    CAS  PubMed  Article  Google Scholar 

  9. Rahimi, A., Ulbrich, A., Stahl, S. S. & Coon, J. J. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).

    CAS  PubMed  Article  Google Scholar 

  10. Lahive, C. W. et al. Advanced model compounds for understanding acid-catalyzed lignin depolymerization: identification of renewable aromatics and a lignin-derived solvent. JACS 138, 8900–8911 (2016).

    CAS  Article  Google Scholar 

  11. Deuss, P. J. et al. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. JACS 137, 7456–7467 (2015).

    CAS  Article  Google Scholar 

  12. Subbotina, E., Velty, A., Samec, J. S. M. & Corma, A. Zeolite-assisted lignin-first fractionation of lignocellulose: overcoming lignin recondensation through shape-selective catalysis. ChemSusChem 13, 4528–4536 (2020).

    CAS  PubMed  Article  Google Scholar 

  13. Galkin, M. V. et al. Hydrogen-free catalytic fractionation of woody biomass. ChemSusChem 9, 3280–3287 (2016).

    CAS  PubMed  Article  Google Scholar 

  14. Kumaniaev, I. et al. Lignin depolymerization to monophenolic compounds in a flow-through system. Green Chem. 19, 5767–5771 (2017).

    CAS  Article  Google Scholar 

  15. Guadix-Montero, S. & Sankar, M. Review on catalytic cleavage of C–C inter-unit linkages in lignin model compounds: towards lignin depolymerisation. Top. Catal. 61, 183–198 (2018).

    CAS  Article  Google Scholar 

  16. Liao, Y. et al. A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 367, 1385–1390 (2020).

    CAS  PubMed  Article  Google Scholar 

  17. Dong, L. et al. Breaking the limit of lignin monomer production via cleavage of interunit carbon–carbon linkages. Chem 5, 1521–1536 (2019).

    CAS  Article  Google Scholar 

  18. Crane, F. L. Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr. 20, 591–Q598 (2001).

    CAS  PubMed  Article  Google Scholar 

  19. Higuchi, T., Satake, C. & Hirobe, M. Selective quinone formation by oxidation of aromatics with heteroaromatic N-oxides catalyzed by ruthenium porphyrins. JACS 117, 8879–8880 (1995).

    CAS  Article  Google Scholar 

  20. Zhang, J.-L. & Che, C.-M. Dichlororuthenium(iv) complex of meso-tetrakis(2,6-dichlorophenyl)porphyrin: active and robust catalyst for highly selective oxidation of arenes, unsaturated steroids, and electron-deficient alkenes by using 2,6-dichloropyridine N-oxide. Chem. Eur. J. 11, 3899–3914 (2005).

    CAS  PubMed  Article  Google Scholar 

  21. Liu, P., Liu, Y., Wong, E. L.-M., Xiang, S. & Che, C.-M. Iron oligopyridine complexes as efficient catalysts for practical oxidation of arenes, alkanes, tertiary amines and N-acyl cyclic amines with oxone. Chem. Sci. 2, 2187–2195 (2011).

    CAS  Article  Google Scholar 

  22. Gulaboski, R. et al. Hydroxylated derivatives of dimethoxy-1,4-benzoquinone as redox switchable earth-alkaline metal ligands and radical scavengers. Sci. Rep. 3, 1865 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Csjernyik, G., Éll, A. H., Fadini, L., Pugin, B. & Bäckvall, J.-E. Efficient ruthenium-catalyzed aerobic oxidation of alcohols using a biomimetic coupled catalytic system. J. Organic Chem. 67, 1657–1662 (2002).

    CAS  Article  Google Scholar 

  24. Samec, J. S. M., Éll, A. H. & Bäckvall, J.-E. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system. Chem. Eur. J. 11, 2327–2334 (2005).

    CAS  PubMed  Article  Google Scholar 

  25. Renders, T. et al. Influence of acidic (H3PO4) and alkaline (NaOH) additives on the catalytic reductive fractionation of lignocellulose. ACS Catal. 6, 2055–2066 (2016).

    CAS  Article  Google Scholar 

  26. Meng, X. et al. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat. Protoc. 14, 2627–2647 (2019).

    CAS  PubMed  Article  Google Scholar 

  27. Fache, M., Boutevin, B. & Caillol, S. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46 (2016).

    CAS  Article  Google Scholar 

  28. Canevali, C. et al. Oxidative degradation of monomeric and dimeric phenylpropanoids: reactivity and mechanistic investigation. J. Chem. Soc. Dalton Trans. 15, 3007–3014 (2002).

    Article  CAS  Google Scholar 

  29. Cui, F., Wijesekera, T., Dolphin, D., Farrell, R. & Skerker, P. Biomimetic degradation of lignin. J. Biotechnol. 30, 15–26 (1993).

    CAS  Article  Google Scholar 

  30. Crestini, C., Pastorini, A. & Tagliatesta, P. Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. J. Mol. Catal. A 208, 195–202 (2004).

    CAS  Article  Google Scholar 

  31. Bozell, J. J., Hames, B. R. & Dimmel, D. R. Cobalt-Schiff base complex catalyzed oxidation of para-substituted phenolics. Preparation of benzoquinones. J. Organic Chem. 60, 2398–2404 (1995).

    CAS  Article  Google Scholar 

  32. Key, R. E., Elder, T. & Bozell, J. J. Steric effects of bulky tethered arylpiperazines on the reactivity of Co-Schiff base oxidation catalysts—a synthetic and computational study. Tetrahedron 75, 3118–3127 (2019).

    CAS  Article  Google Scholar 

  33. Biannic, B., Bozell, J. J. & Elder, T. Steric effects in the design of Co-Schiff base complexes for the catalytic oxidation of lignin models to para-benzoquinones. Green Chem. 16, 3635–3642 (2014).

    CAS  Article  Google Scholar 

  34. Biannic, B. & Bozell, J. J. Efficient cobalt-catalyzed oxidative conversion of lignin models to benzoquinones. Org. Lett. 15, 2730–2733 (2013).

    CAS  PubMed  Article  Google Scholar 

  35. Hanson, S. K., Wu, R. & Silks, L. A. P. C–C or C–O Bond cleavage in a phenolic lignin model compound: selectivity depends on vanadium catalyst. Angew. Chem. Int. Ed. 51, 3410–3413 (2012).

    CAS  Article  Google Scholar 

  36. Zhang, C. & Wang, F. Catalytic lignin depolymerization to aromatic chemicals. Acc. Chem. Res. 53, 470–484 (2020).

    CAS  PubMed  Article  Google Scholar 

  37. Wang, M. & Wang, F. Catalytic scissoring of lignin into aryl monomers. Adv. Mater. 31, 1901866 (2019).

    Article  CAS  Google Scholar 

  38. Tran, F., Lancefield, C. S., Kamer, P. C. J., Lebl, T. & Westwood, N. J. Selective modification of the β–β linkage in DDQ-treated Kraft lignin analysed by 2D NMR spectroscopy. Green Chem. 17, 244–249 (2015).

    CAS  Article  Google Scholar 

  39. Rahimi, A., Azarpira, A., Kim, H., Ralph, J. & Stahl, S. S. Chemoselective metal-free aerobic alcohol oxidation in lignin. JACS 135, 6415–6418 (2013).

    CAS  Article  Google Scholar 

  40. Rafiee, M., Alherech, M., Karlen, S. D. & Stahl, S. S. Electrochemical aminoxyl-mediated oxidation of primary alcohols in lignin to carboxylic acids: polymer modification and depolymerization. JACS 141, 15266–15276 (2019).

    CAS  Article  Google Scholar 

  41. Hunter, D. H., Barton, D. H. R. & Motherwell, W. J. Oxoammonium salts as oxidizing agents: 2,2,6,6-tetramethyl-1-oxopiperidinium chloride. Tetrahedron Lett. 25, 603–606 (1984).

    CAS  Article  Google Scholar 

  42. Guo, H. X., Liu, Y. C., Liu, Z. L. & Li, C. L. 1-oxo-2,2,6,6-Tetramethyl-4-chloropiperidinium perchlorate. A new facile oxidant for phenol coupling. Res. Chem. Intermed. 17, 137–143 (1992).

    CAS  Article  Google Scholar 

  43. Ciriminna, R. & Pagliaro, M. Industrial oxidations with organocatalyst TEMPO and its derivatives. Org. Process Res. Dev. 14, 245–251 (2010).

    CAS  Article  Google Scholar 

  44. Mercadante, M. A., Kelly, C. B., Bobbitt, J. M., Tilley, L. J. & Leadbeater, N. E. Synthesis of 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate and 4-acetamido-(2,2,6,6-tetramethyl-piperidin-1-yl)oxyl and their use in oxidative reactions. Nat. Protoc. 8, 666–676 (2013).

    CAS  PubMed  Article  Google Scholar 

  45. Cardiel, A. C., Taitt, B. J. & Choi, K.-S. Stabilities, regeneration pathways, and electrocatalytic properties of nitroxyl radicals for the electrochemical oxidation of 5-hydroxymethylfurfural. ACS Sustain. Chem. Eng. 7, 11138–11149 (2019).

    CAS  Article  Google Scholar 

  46. Miller, S. A., Nandi, J., Leadbeater, N. E. & Eddy, N. A. Probing the effect of counterions on the oxidation of alcohols using oxoammonium salts. Eur. J. Org. Chem. 2020, 108–112 (2020).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

E.S. and J.S.M.S. thank the Swedish Energy Agency (Energimyndigheten, grant nos. 47448-1, 45903-1 and 41262-1). T.R. and J.S.M.S. thank the Bio-based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation program (grant no. 744349). M.D.M.-M. thanks COST (grant no. FP-1306-STSM). M.J. and X.Y. thank Olle Engkvists Stiftelse (grant no. 189-0209) and Åke Åkessons Stiftelse (grant no. 1943229).

Author information

Authors and Affiliations

Authors

Contributions

E.S. conceived the idea, designed the study along with J.S.M.S., and wrote the manuscript and the supporting information along with T.R. and J.S.M.S. E.S. performed all of the wood experiments (including the analysis) and wood-derived fractions. E.S. and T.R. performed the synthesis of model compounds and the mechanistic studies. M.D.M.-M. participated in the initial optimizations of the process and participated in the literature search. X.Y. and T.R. performed the electrocatalytic experiments under the supervision of M.J.

Corresponding author

Correspondence to Joseph S. M. Samec.

Ethics declarations

Competing interests

J.S.M. Samec is the founder of RenFuel, a company working on lignin valorization. The other authors do not declare any competing interests.

Additional information

Peer review information Nature Chemistry thanks Jeremy Luterbacher and the other, anonymous, reviewer(s) for their contribution to the peer review of this file.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

All detailed experimental procedures as well as all raw data and spectra of compounds.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Subbotina, E., Rukkijakan, T., Marquez-Medina, M.D. et al. Oxidative cleavage of C–C bonds in lignin. Nat. Chem. 13, 1118–1125 (2021). https://doi.org/10.1038/s41557-021-00783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00783-2

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing