Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism

Abstract

Porous materials are very promising for the development of cost- and energy-efficient separation processes, such as for the purification of ethylene from ethylene/ethane mixture—an important but currently challenging industrial process. Here we report a microporous hydrogen-bonded organic framework that takes up ethylene with very good selectivity over ethane through a gating mechanism. The material consists of tetracyano-bicarbazole building blocks held together through intermolecular CN···H–C hydrogen bonding interactions, and forms as a threefold-interpenetrated framework with pores of suitable size for the selective capture of ethylene. The hydrogen-bonded organic framework exhibits a gating mechanism in which the threshold pressure required for guest uptake varies with the temperature. Ethylene/ethane separation is validated by breakthrough experiments with high purity of ethylene (99.1%) at 333 K. Hydrogen-bonded organic frameworks are usually not robust, yet this material was stable under harsh conditions, including exposure to strong acidity, basicity and a variety of highly polar solvents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tuning gate-pressures mechanism for highly selective gas separation.
Fig. 2: Crystal structure of HOF-FJU-1.
Fig. 3: C2H4 and C2H6 sorption and separation in HOF-FJU-1a.
Fig. 4: Single-crystal structure of HOF-FJU-1∙0.94 C2H4.

Similar content being viewed by others

Data availability

All data supporting the finding of this study are available within this article and its Supplementary Information. Crystallographic data for the structures in this article have been deposited at the Cambridge Crystallographic Data Centre under deposition nos. CCDC 1878390 (HOF-FJU-1), 1871845 (HOF-FJU-1H2O), 1999088 (HOF-FJU-1a), 1942488 (HOF-FJU-1C2H4) and 1999090 (HOF-FJU-1b). Copies of the data can be obtained free of charge from https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  PubMed  Google Scholar 

  2. Lin, J. Y. S. Molecular sieves for gas separation. Science 353, 121–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  CAS  Google Scholar 

  4. Kuznicki, S. M. et al. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 412, 720–724 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kuznicki, S. M. & Bell, V. A. Olefin separations employing CTS molecular sieves. US Patent 6517611 (2003).

  6. Mohamed, M. H. et al. Designing open metal sites in metal–organic frameworks for paraffin/olefin separations. J. Am. Chem. Soc. 141, 13003–13007 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  CAS  Google Scholar 

  8. Li, L. et al. Ethane/ethylene separation in a metal–organic framework with iron-peroxo sites. Science 362, 443–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Liao, P.-Q., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. Efficient purification of ethene by an ethane-trapping metal–organic framework. Nat. Commun. 6, 8697 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Qazvini, T., Babarao, R., Shi, Z. L., Zhang, Y. B. & Telfer, S. G. A robust ethane-trapping metal–organic framework with a high capacity for ethylene purification. J. Am. Chem. Soc. 141, 5014–5020 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, H. et al. Pore-space-partition-enabled exceptional ethane uptake and ethane-selective ethane–ethylene separation. J. Am. Chem. Soc. 142, 2222–2227 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Zeng, H. et al. Cage-interconnected metal–organic framework with tailored apertures for efficient C2H6/C2H4 separation under humid conditions. J. Am. Chem. Soc. 141, 20390–20396 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Hao, H.-G. et al. Simultaneous trapping of C2H2 and C2H6 from a ternary mixture of C2H2/C2H4/C2H6 in a robust metal–organic framework for the purification of C2H4. Angew. Chem. Int. Ed. 130, 16299–16303 (2018).

    Article  Google Scholar 

  14. Lin, L. et al. Fundamental insights into the reactivity and utilization of open metal sites in Cu (i)-MFU-4l. Organometallics 38, 3453–3459 (2019).

    Article  CAS  Google Scholar 

  15. Wang, H. et al. One-of-a-kind: a microporous metal–organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers via temperature- and adsorbate-dependent molecular sieving. Energy Environ. Sci. 11, 1226 (2018). Based on the 77 K N2 isotherms, flexible-robust phenomena have not been clearly observed in this calcium MOF.

    Article  CAS  Google Scholar 

  16. Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).

    Article  CAS  Google Scholar 

  17. Li, B. et al. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 136, 8654–8660 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. He, Y., Xiang, S. & Chen, B. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 133, 14570–14573 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, R.-B. et al. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 48, 1362–1389 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Liao, P.-Q., Huang, N.-Y., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. Controlling guest conformation for efficient purification of butadiene. Science 356, 1193–1196 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, K.-J. et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 366, 241 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X. et al. Selective ethane/ethylene separation in a robust microporous hydrogen-bonded organic framework. J. Am. Chem. Soc. 142, 633–640 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Bloch, E. D. et al. Hydrocarbon separations in a metal–organic framework with open iron(ii) coordination sites. Science 335, 1606–1610 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Yang, S. et al. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nat. Chem. 7, 121–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Cui, X. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353, 141–144 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Yoon, J. W. et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nat. Mater. 16, 526–531 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Wang, H. et al. Tailor-made microporous metal–organic frameworks for the full separation of propane from propylene through selective size exclusion. Adv. Mater. 30, 1805088 (2018).

    Article  CAS  Google Scholar 

  29. Lin, R.-B. et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat. Mater. 17, 1128–1133 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal–organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Bavykina, A. & Gascon, J. An efficient nanosieve. Nat. Mater. 17, 1057–1058 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Reid, C. R. & Thomas, K. M. Adsorption kinetics and size exclusion properties of probe molecules for the selective porosity in a carbon molecular sieve used for air separation. J. Phys. Chem. B 105, 10619–10629 (2001).

    Article  CAS  Google Scholar 

  33. Webster, C. E., Drago, R. S. & Zerner, M. C. Molecular dimensions for adsorptives. J. Am. Chem. Soc. 120, 5509–5516 (1998).

    Article  CAS  Google Scholar 

  34. Li, L. et al. A metal–organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene. Angew. Chem. Int. Ed. 57, 15183–15188 (2018).

    Article  CAS  Google Scholar 

  35. Krause, S. et al. A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532, 348–352 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Gu, C. et al. Design and control of gas diffusion process in a nanoporous soft crystal. Science 363, 387 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, H. et al. Lock-and-key and shape-memory effects in an unconventional synthetic path to magnesium metal–organic frameworks. Angew. Chem. Int. Ed. 58, 11757–11762 (2019).

    Article  CAS  Google Scholar 

  38. Kitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew. Chem. Int. Ed. 42, 428–431 (2003).

    Article  CAS  Google Scholar 

  39. Li, L. et al. Flexible-robust metal–organic framework for efficient removal of propyne from propylene. J. Am. Chem. Soc. 139, 7733–7736 (2017). “Flexible–robust MOF” has been defined for the first time in this literature, as shown in Fig. 1b. The “flexible-robust” has been also clarified in illustration on the N2 and CO2 adsorption of HOF-FJU-1a (Supplementary Figs. 9 and 12) at cryogenic temperatures.

    Article  CAS  PubMed  Google Scholar 

  40. Sarkisov, L. & Harrison, A. Computational structure characterisation tools in application to ordered and disordered porous materials. Mol. Simul. 37, 1248–1257 (2011).

    Article  CAS  Google Scholar 

  41. Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl. Chem. 87, 1051–1069 (2015).

    Article  CAS  Google Scholar 

  42. Aguado, S., Bergeret, G., Daniel, C. & Farrusseng, D. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. J. Am. Chem. Soc. 134, 14635–14637 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Bereciartua, P. J. et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science 358, 1068–1071 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Hu, F. L. et al. An ultrastable and easily regenerated hydrogen-bonded organic molecular framework with permanent porosity. Angew. Chem. Int. Ed. 56, 2101–2104 (2017).

    Article  CAS  Google Scholar 

  45. Yin, Q. et al. An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy. Angew. Chem. Int. Ed. 57, 7691–7696 (2018).

    Article  CAS  Google Scholar 

  46. Zhang, X. et al. A rod-packing hydrogen-bonded organic framework with suitable pore confinement for benchmark ethane/ethylene separation. Angew. Chem. Int. Ed. 60, 10304–10310 (2021).

    Article  CAS  Google Scholar 

  47. Sarkisov, L. & Harrison, A. Computational structure characterisation tools in application to ordered and disordered porous materials. Mol. Simul. 37, 1248–1257 (2011).

    Article  CAS  Google Scholar 

  48. Sheldrick, G. M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (grant nos. 21975044, 21971038 and 21922810), the Fujian Provincial Department of Science and Technology (grant nos. 2019H6012 and 21019L3004) and the Welch Foundation (grant no. AX-1730).

Author information

Authors and Affiliations

Authors

Contributions

Y.S.Y., L.L., R.-B.L., Z.J.Z., S.C.X. and B.L.C. conceived the research idea and designed the experiments. Y.S.Y. performed most of the experiments and analysed the data. L.L. and L.Y. measured the laboratory-scale fixed-bed breakthrough tests of HOF-FJU-1. Y.S.Y., L.L, R.-B.L., Z.J.Z., S.C.X. and B.L.C wrote the paper. All authors discussed the results and commented on the manuscript. Y.S.Y., L.L. and R.-B.L. contributed equally to this work.

Corresponding authors

Correspondence to Zhangjing Zhang, Shengchang Xiang or Banglin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Ashleigh Fletcher, Ichiro Hisaki, Claire Hobday and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Tables 1–13 and references.

Supplementary Data 1

Crystallographic data for HOF-FJU-1.

Supplementary Data 2

Structure-factor file for HOF-FJU-1.

Supplementary Data 3

Crystallographic data for HOF-FJU-1a.

Supplementary Data 4

Structure-factor file for HOF-FJU-1a.

Supplementary Data 5

Crystallographic data for HOF-FJU-1b.

Supplementary Data 6

Structure-factor file for HOF-FJU-1b.

Supplementary Data 7

Crystallographic data for HOF-FJU-C2H4.

Supplementary Data 8

Structure-factor file for HOF-FJU-C2H4.

Supplementary Data 9

Crystallographic data for HOF-FJU-H2O.

Supplementary Data 10

Structure-factor file for HOF-FJU-H2O.

Supplementary Data 11

Data for Supplementary Figs. 10,11, 13–22.

Supplementary Data 12

NMR data for Supplementary Figs. 35 (1H NMR spectra of compound 2), 36 (1H NMR spectra of compound 3) and 37 (13C NMR spectra of compound 3).

Supplementary Data 13

Input file for calculations, C2H4 298 K.

Supplementary Data 14

Input file for calculations, C2H4 318 K.

Supplementary Data 15

Input file for calculations, C2H4 333 K.

Supplementary Data 16

Input file for calculations, C2H6 298 K.

Supplementary Data 17

Input file for calculations, C2H6 318 K.

Supplementary Data 18

Input file for calculations, C2H6 333 K.

Source data

Source Data Fig. 1

Source data for Fig. 3l, purity of C2H4 from HOF-FJU-1 during the regeneration processes of the fixed bed at different temperatures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, L., Lin, RB. et al. Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 13, 933–939 (2021). https://doi.org/10.1038/s41557-021-00740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00740-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing