Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclic polyacetylene

An Author Correction to this article was published on 14 September 2021

This article has been updated

Abstract

Here we demonstrate the synthesis of cyclic polyacetylene (c-PA), or [∞]annulene, via homogeneous tungsten-catalysed polymerization of acetylene. Unique to the cyclic structure and evidence for its topology, the c-PA contains >99% trans double bonds, even when synthesized at −94 °C. High activity with low catalyst loadings allows for the synthesis of temporarily soluble c-PA, thus opening the opportunity to derivatize the polymer in solution. Absolute evidence for the cyclic topology comes from atomic force microscopy images of bottlebrush derivatives generated from soluble c-PA. Now available in its cyclic form, initial characterization studies are presented to elucidate the topological differences compared with traditionally synthesized linear polyacetylene. One advantage to the synthesis of c-PA is the direct synthesis of the trans–transoid isomer. Low defect concentrations, low soliton concentration, and relatively high conjugation lengths are characteristics of c-PA. Efficient catalysis permits the rapid synthesis of lustrous flexible thin films of c-PA, and when doped with I2, they are highly conductive (398 (±76) Ω−1 cm−1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historical development of isolable [n]annulenes.
Fig. 2: Isomerization for linear polyacetylene and [16]annulene.
Fig. 3: Evidence for a cyclic topology from AFM images of cyclic bottlebrushes spin-coated onto a mica surface.
Fig. 4: Spectroscopic characterization of c-PA.
Fig. 5: Spectroscopic characterization of c-PA.

Similar content being viewed by others

Data availability

All relevant data are provided in the figures, table and Supplementary Information.

Change history

References

  1. Kekulé, A. Sur la constitution des substances aromatiques. B. Mens. Soc. Chim. Paris 3, 98–110 (1865).

    Google Scholar 

  2. Kekulé, A. Ueber einige condensationsprodukte des aldehyds. Ann. Chem. Pharm. 162, 77–124 (1872).

    Article  Google Scholar 

  3. Lonsdale, K. The structure of the benzene ring in C6(CH3)6. Proc. R. Soc. Lond. A 123, 494–515 (1929).

    Article  CAS  Google Scholar 

  4. Hückel, E. Quantentheoretische beiträge zum benzolproblem i. Die elektronenkonfiguration des benzols und verwandter verbindungen. Z. Phys. 70, 204–286 (1931).

    Article  Google Scholar 

  5. Rickhaus, M. et al. Global aromaticity at the nanoscale. Nat. Chem. 12, 236–241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ni, Y. et al. 3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states. Nat. Chem. 12, 242–248 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Sondheimer, F. & Wolovsky, R. The synthesis of cycloöctadecanonaene, a new aromatic system. Tetrahedron Lett. 1, 3–6 (1959).

    Article  Google Scholar 

  8. Sondheimer, F. & Gaoni, Y. Unsaturated macrocyclic compounds. XV. Ccyclotetradecaheptaene. J. Am. Chem. Soc. 82, 5765–5766 (1960).

    Article  CAS  Google Scholar 

  9. Kertesz, M., Choi, C. H. & Yang, S. Conjugated polymers and aromaticity. Chem. Rev. 105, 3448–3481 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Yoshizawa, K., Kato, T. & Yamabe, T. Electron correlation effects and possible D6h structures in large cyclic polyenes. J. Phys. Chem. 100, 5697–5701 (1996).

    Article  CAS  Google Scholar 

  11. Choi, C. H. & Kertesz, M. Bond length alternation and aromaticity in large annulenes. J. Chem. Phys. 108, 6681–6688 (1998).

    Article  CAS  Google Scholar 

  12. Natta, G., Mazzanti, G. & Corradini, P. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 25, 3–12 (1958).

    CAS  Google Scholar 

  13. Chien, J. C. W. Polyacetylene: Chemistry, Physics, and Material Science (Academic, 1984).

  14. Feast, W. J., Tsibouklis, J., Pouwer, K. L., Groenendaal, L. & Meijer, E. W. Synthesis, processing and material properties of conjugated polymers. Polymer 37, 5017–5047 (1996).

    Article  CAS  Google Scholar 

  15. Hudson, B. S. Polyacetylene: myth and reality. Materials 11, 1–21 (2018).

    Article  CAS  Google Scholar 

  16. Berets, D. J. & Smith, D. S. Electrical properties of linear polyacetylene. Trans. Faraday Soc. 64, 823–828 (1968).

    Article  CAS  Google Scholar 

  17. Shirakawa, H. & Ikeda, S. Infrared spectra of poly(acetylene). Polym. J. 2, 231–244 (1971).

    Article  CAS  Google Scholar 

  18. Chiang, C. K. et al. Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J. Am. Chem. Soc. 100, 1013–1015 (1978).

    Article  CAS  Google Scholar 

  19. Skotheim, T. A. & Reynolds, J. Handbook of Conducting Polymers (CRC, 2007).

  20. Liu, J. Z., Lam, J. W. Y. & Tang, B. Z. Acetylenic polymers: syntheses, structures and functions. Chem. Rev. 109, 5799–5867 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Nadif, S. S. et al. Introducing “ynene” metathesis: ring-expansion metathesis polymerization leads to highly cis and syndiotactic cyclic polymers of norbornene. J. Am. Chem. Soc. 138, 6408–6411 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Gonsales, S. A. et al. Highly tactic cyclic polynorbornene: stereoselective ring expansion metathesis polymerization of norbornene catalyzed by a new tethered tungsten-alkylidene catalyst. J. Am. Chem. Soc. 138, 4996–4999 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Xia, Y. et al. Ring-expansion metathesis polymerization: catalyst-dependent polymerization profiles. J. Am. Chem. Soc. 131, 2670–2677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bielawski, C. W., Benitez, D. & Grubbs, R. H. An “endless” route to cyclic polymers. Science 297, 2041–2044 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Chang, Y. A. & Waymouth, R. M. Recent progress on the synthesis of cyclic polymers via ring-expansion strategies. J. Polym. Sci. Pol. Chem 55, 2892–2902 (2017).

    Article  CAS  Google Scholar 

  26. Tezuka, Y. Progress of Cyclic Polymers in Syntheses, Properties and Functions (World Scientific, 2013).

  27. McGowan, K. P., O’Reilly, M. E., Ghiviriga, I., Abboud, K. A. & Veige, A. S. Compelling mechanistic data and identification of the active species in tungsten-catalyzed alkyne polymerizations: conversion of a trianionic pincer into a new tetraanionic pincer-type ligand. Chem. Sci. 4, 1145–1155 (2013).

    Article  CAS  Google Scholar 

  28. Sarkar, S. et al. An OCO3− trianionic pincer tungsten(VI) alkylidyne: rational design of a highly active alkyne polymerization catalyst. J. Am. Chem. Soc. 134, 4509–4512 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Roland, C. D., Li, H., Abboud, K. A., Wagener, K. B. & Veige, A. S. Cyclic polymers from alkynes. Nat. Chem. 8, 791–796 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Pal, D., Miao, Z. H., Garrison, J. B., Veige, A. S. & Sumerlin, B. S. Ultrahigh molecular weight macrocyclic bottlebrushes via post-polymerization modification of a cyclic polymer. Macromolecules 53, 9717–9724 (2020).

    Article  CAS  Google Scholar 

  31. Miao, Z. H., Kubo, T., Pal, D., Sumerlin, B. S. & Veige, A. S. pH-responsive water-soluble cyclic polymer. Macromolecules 52, 6260–6265 (2019).

    Article  CAS  Google Scholar 

  32. Niu, W. J. et al. Polypropylene: now available without chain ends. Chem 5, 237–244 (2019).

    Article  CAS  Google Scholar 

  33. Roland, C. D., Zhang, T., VenkatRamani, S., Ghiviriga, I. & Veige, A. S. A catalytically relevant intermediate in the synthesis of cyclic polymers from alkynes. Chem. Commun. 55, 13697–13700 (2019).

    Article  CAS  Google Scholar 

  34. Miao, Z. H. et al. Cyclic poly(4-methyl-1-pentene): efficient catalytic synthesis of a transparent cyclic polymer. Macromolecules 53, 7774–7782 (2020).

    Article  CAS  Google Scholar 

  35. Baker, G. L., Shelburne, J. A. & Bates, F. S. Preparation of low-spin trans-polyacetylene. J. Am. Chem. Soc. 108, 7377–7380 (1986).

    Article  CAS  Google Scholar 

  36. Ito, T., Shirakawa, H. & Ikeda, S. Simultaneous polymerization and formation of polyacetylene film on surface of concentrated soluble Ziegler-type catalyst solution. J. Polym. Sci. Pol. Chem 12, 11–20 (1974).

    Article  CAS  Google Scholar 

  37. Oth, J. F. M. Conformational mobility and fast bond shift in the annulenes. Pure Appl. Chem. 25, 573–622 (1971).

    Article  CAS  Google Scholar 

  38. Michel, C. S. et al. Tunneling by 16 carbons: planar bond shifting in [16]annulene. J. Am. Chem. Soc. 141, 5286–5293 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Harada, I., Tasumi, M., Shirakawa, H. & Ikeda, S. Raman spectra of polyacetylene and highly conducting iodine-doped polyacetylene. Chem. Lett. 7, 1411–1414 (1978).

    Article  Google Scholar 

  40. Schugerl, F. B. & Kuzmany, H. Optical modes of trans-polyacetylene. J. Chem. Phys. 74, 953–958 (1981).

    Article  Google Scholar 

  41. Lichtmann, L. S., Fitchen, D. B. & Temkin, H. Resonant Raman spectroscopy of conducting organic polymers. (CH)x and an oriented analog. Synth. Met. 1, 139–149 (1980).

    Article  CAS  Google Scholar 

  42. Mulazzi, E., Brivio, G. P., Faulques, E. & Lefrant, S. Experimental and theoretical Raman results in trans polyacetylene. Solid State Commun. 46, 851–855 (1983).

    Article  CAS  Google Scholar 

  43. Ehrenfreund, E., Vardeny, Z., Brafman, O. & Horovitz, B. Amplitude and phase modes in trans-polyacetylene: resonant Raman scattering and induced infrared activity. Phys. Rev. B 36, 1535–1553 (1987).

    Article  CAS  Google Scholar 

  44. Kuzmany, H., Imhoff, E. A., Fitchen, D. B. & Sarhangi, A. Frank–Condon approach for optical-absorption and resonance Raman scattering in trans-polyacetylene. Phys. Rev. B 26, 7109–7112 (1982).

    Article  CAS  Google Scholar 

  45. Heller, E. J., Yang, Y. & Kocia, L. Raman scattering in carbon nanosystems: solving polyacetylene. ACS Cent. Sci. 1, 40–49 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chance, R. R., Schaffer, H., Knoll, K., Schrock, R. & Silbey, R. Linear optical-properties of a series of linear polyenes—implications for polyacetylene. Synth. Met. 49, 271–280 (1992).

    Article  CAS  Google Scholar 

  47. Schaffer, H. E., Chance, R. R., Silbey, R. J., Knoll, K. & Schrock, R. R. Conjugation length dependence of Raman scattering in a series of linear polyenes—implications for polyacetylene. J. Chem. Phys. 94, 4161–4170 (1991).

    Article  CAS  Google Scholar 

  48. Schaffer, H., Chance, R., Knoll, K., Schrock, R. & Silbey, R. Linear optical properties of a series of polyacetylene oligomers. In Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics (eds Brédas, J. & Chance, R.) 365–376 (Springer, 1990).

  49. Brivio, G. P. & Mulazzi, E. Theoretical analysis of absorption and resonant Raman scattering spectra of trans-(CH)x. Phys. Rev. B 30, 876–882 (1984).

    Article  CAS  Google Scholar 

  50. Chen, Z. X. et al. Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 357, 475–478 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Kang, C., Jung, K., Ahn, S. & Choi, T. L. Controlled cyclopolymerization of 1,5-hexadiynes to give narrow band gap conjugated polyacetylenes containing highly strained cyclobutenes. J. Am. Chem. Soc. 142, 17140–17146 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Gorman, C. B., Ginsburg, E. J. & Grubbs, R. H. Soluble, highly conjugated derivatives of polyacetylene from the ring-opening metathesis polymerization of monosubstituted cyclooctatetraenes—synthesis and the relationship between polymer structure and physical properties. J. Am. Chem. Soc. 115, 1397–1409 (1993).

    Article  CAS  Google Scholar 

  53. Scherman, O. A., Rutenberg, I. M. & Grubbs, R. H. Direct synthesis of soluble, end-functionalized polyenes and polyacetylene block copolymers. J. Am. Chem. Soc. 125, 8515–8522 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Knoll, K. & Schrock, R. R. Preparation of tert-butyl-capped polyenes containing up to 15 double bonds. J. Am. Chem. Soc. 111, 7989–8004 (1989).

    Article  CAS  Google Scholar 

  55. Eckhardt, H. On the optical-properties of trans-polyacetylene. J. Chem. Phys. 79, 2085–2086 (1983).

    Article  CAS  Google Scholar 

  56. Sebelik, V. et al. Spectroscopy and excited state dynamics of nearly infinite polyenes. Phys. Chem. Chem. Phys. 22, 17867–17879 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Fincher, C. R. et al. Electronic-structure of polyacetylene—optical and infrared studies of undoped semiconducting (CH)x and heavily doped metallic (CH)x. Phys. Rev. B 20, 1589–1602 (1979).

    Article  CAS  Google Scholar 

  58. Leal, J. F. P. et al. Properties of charged defects on unidimensional polymers. J. Comput. Theor. Nanosci. 8, 541–549 (2011).

    Article  CAS  Google Scholar 

  59. Maricq, M. M., Waugh, J. S., Macdiarmid, A. G., Shirakawa, H. & Heeger, A. J. Carbon-13 nuclear magnetic resonance of cis- and trans-polyacetylenes. J. Am. Chem. Soc. 100, 7729–7730 (1978).

    Article  CAS  Google Scholar 

  60. Haberkorn, H., Naarmann, H., Penzien, K., Schlag, J. & Simak, P. Structure and conductivity of poly(acetylene). Synth. Met. 5, 51–71 (1982).

    Article  CAS  Google Scholar 

  61. Dubroca, T. et al. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers. J. Magn. Reson. 289, 35–44 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Knoll, K., Krouse, S. A. & Schrock, R. R. Preparation and isolation of polyenes containing up to 15 double bonds. J. Am. Chem. Soc. 110, 4424–4425 (1988).

    Article  CAS  Google Scholar 

  63. Gibson, H. W., Kaplan, S., Mosher, R. A., Prest, W. M. & Weagley, R. J. Isomerization of polyacetylene films of the Shirakawa type—spectroscopy and kinetics. J. Am. Chem. Soc. 108, 6843–6851 (1986).

    Article  CAS  Google Scholar 

  64. Goldberg, I. B., Crowe, H. R., Newman, P. R., Heeger, A. J. & Macdiarmid, A. G. Electron-spin resonance of polyacetylene and AsF5-doped polyacetylene. J. Chem. Phys. 70, 1132–1136 (1979).

    Article  CAS  Google Scholar 

  65. Weinberger, B. R., Kaufer, J., Heeger, A. J., Pron, A. & Macdiarmid, A. G. Magnetic susceptibility of doped polyacetylene. Phys. Rev. B 20, 223–230 (1979).

    Article  CAS  Google Scholar 

  66. Shirakawa, H., Ito, T. & Ikeda, S. Electrical properties of polyacetylene with various cis–trans compositions. Makromol. Chem. 179, 1565–1573 (1978).

    Article  CAS  Google Scholar 

  67. Bernier, P. et al. Magnetic properties of cis- and trans-polyacetylene as studied by electron spin resonance. Polym. J. 13, 201–207 (1981).

    Article  CAS  Google Scholar 

  68. Bernier, P. et al. Electronic properties of non-doped and doped polyacetylene films studied by ESR. J. Phys. Lett. 40, L297–L301 (1979).

    Article  Google Scholar 

  69. Heeger, A. J. Charge-transfer in conducting polymers. Striving toward intrinsic properties. Faraday Discuss. 88, 203–211 (1989).

    Article  CAS  Google Scholar 

  70. Pfeiffer, R. S., Yoder, G. & Chen, A. B. Ground state and excitations in polyacetylene chains. Phys. Rev. B 54, 1735–1740 (1996).

    Article  CAS  Google Scholar 

  71. Basescu, N. et al. High electrical conductivity in doped polyacetylene. Nature 327, 403–405 (1987).

    Article  CAS  Google Scholar 

  72. Tsukamoto, J. & Takahashi, A. Synthesis and electrical properties of polyacetylene yielding conductivity of 105 S/cm. Synth. Met. 41, 7–12 (1991).

    Article  CAS  Google Scholar 

  73. Doering, Wv. E. & Sarma, K. Stabilization energy of polyenyl radicals: all-trans-nonatetraenyl radical by thermal rearrangement of a semirigid {4-1-2} heptaene. Model for thermal lability of beta-carotene. J. Am. Chem. Soc. 114, 6037–6043 (1992).

    Article  CAS  Google Scholar 

  74. Bernardi, B. F., Garavelli, M. & Olucci, M. Trans cis isomerization in long linear polyenes as beta-carotene models: a comparative CAS-PT2 and DFT study. Mol. Phys. 92, 359–364 (1997).

    CAS  Google Scholar 

Download references

Acknowledgements

A portion of this work was performed in the McKnight Brain Institute at the National High Magnetic Field Laboratory’s Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility. The assistance from A. Mehta in the collection of the solid-state NMR data is gratefully acknowledged. D. Wei and J. Huang are acknowledged for assisting in the acquisition of diffuse-reflectance UV–vis spectra. This material is based on work supported by the National Science Foundation CHE-1808234. The solid-state NMR study was supported by National Science Foundation Cooperative Agreement DMR-1644779 and the State of Florida. The NMR spectrometer used to acquire the solid-state NMR spectra was funded, in part, by National Institutes of Health award S10RR031637. The MAS-DNP instrument at NHMFL is supported by the NIH P41 GM122698 and NIH S10 OD018519 grants.

Author information

Authors and Affiliations

Authors

Contributions

Z.M. synthesized c-PA and l-PA in all forms, characterized c-PA and l-PA with IR, Raman, CP-MAS 13C NMR and EPR, performed the cryogenic UV–vis monitoring the synthesis of temporarily soluble c-PA, synthesized and obtained the AFM images of cyclic bottlebrushes from temporarily soluble c-PA, and studied the conductivities of c-PA before and after doping with I2. S.A.G. synthesized c-PA, characterized c-PA with IR and studied its conductivity. C.R.B. studied the CP-MAS 13C NMR of c-PA and l-PA. C.E. provided data analysis and preliminary computational modelling of 13C NMR data. F.M.-V. performed MAS-DNP 13C NMR experiments. The manuscript was written with contributions from all authors. All authors have given approval to the final version of the manuscript. A.S.V. and B.S.S. directed the research.

Corresponding authors

Correspondence to Brent S. Sumerlin or Adam S. Veige.

Ethics declarations

Competing interests

The authors and UF Research Foundation Inc. have filed patents related to this subject matter. PCT Patent Application No. PCT/US21/17916.

Additional information

Peer review information Nature Chemistry thanks the reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Discussion and Tables 1–6.

Supplementary Video 1

This video depicts the colour change during the polymerization of dilute acetylene THF solution with catalyst 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Z., Gonsales, S.A., Ehm, C. et al. Cyclic polyacetylene. Nat. Chem. 13, 792–799 (2021). https://doi.org/10.1038/s41557-021-00713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00713-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing