A silicon–carbonyl complex stable at room temperature


Main-group-element compounds with energetically high-lying donor and low-lying acceptor orbitals are able to mimic chemical bonding motifs and reactivity patterns known in transition metal chemistry, including small-molecule activation and catalytic reactions. Monovalent group 13 compounds and divalent group 14 compounds, particularly silylenes, have been shown to be excellent candidates for this purpose. However, one of the most common reactions of transition metal complexes, the direct reaction with carbon monoxide and formation of room-temperature isolable carbonyl complexes, is virtually unknown in main-group-element chemistry. Here, we show the synthesis, single-crystal X-ray structure, and density functional theory computations of a room-temperature-stable silylene carbonyl complex [L(Br)Ga]2Si:–CO (L = HC[C(Me)N(2,6-iPr2-C6H3)]2), which was obtained by direct carbonylation of the electron-rich silylene intermediate [L(Br)Ga]2Si:. Furthermore, [L(Br)Ga]2Si:–CO reacts with H2 and PBr3 with bond activation, whereas the reaction with cyclohexyl isocyanide proceeds with CO substitution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: A selection of Si and Ge compounds formed in reactions of silylenes and germylene with CO.
Fig. 2: Synthesis of compounds 1–6 and exemplary reactions of 5.
Fig. 3: Molecular structures of compounds 3–6 as derived from single-crystal X-ray crystallography.
Fig. 4: Thermochemical comparisons.

Data availability

All data generated or analysed during this study are included in this Article (and its Supplementary Information). The structures of 16 in the solid state were determined by single-crystal X-ray diffraction and the crystallographic data have been deposited with the Cambridge Crystallographic Data Centre under nos. CCDC 1943186 (1), 1943187 (2), 1943188 (3), 1943189 (4), 1943190 (5) and 1967024 (6). Copies of the data can be obtained free of charge on application to CCDC.


  1. 1.

    Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    CAS  PubMed  Google Scholar 

  2. 2.

    Martin, D., Soleilhavoup, M. & Bertrand, G. Stable singlet carbenes as mimics for transition metal centers. Chem. Sci. 2, 389–399 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Hansmann, M. M. & Bertrand, G. Transition-metal-like behavior of main group elements: ligand exchange at a phosphinidene. J. Am. Chem. Soc. 138, 15885–15888 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Weetman, C. & Inoue, S. The road travelled: after main-group elements as transition metals. ChemCatChem 10, 4213–4228 (2018).

    CAS  Google Scholar 

  5. 5.

    Melen, R. L. Frontiers in molecular p-block chemistry: from structure to reactivity. Science 363, 479–484 (2019).

    CAS  PubMed  Google Scholar 

  6. 6.

    Leitao, E. M., Jurca, T. & Manners, I. Catalysis in service of main group chemistry offers a versatile approach to p-block molecules and materials. Nat. Chem. 5, 817–829 (2013).

    CAS  PubMed  Google Scholar 

  7. 7.

    Wu, X. et al. Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals. Science 361, 912–916 (2018).

    CAS  PubMed  Google Scholar 

  8. 8.

    Wu, X. et al. Barium as honorary transition metal in action: experimental and theoretical study of Ba(CO)+ and Ba(CO). Angew. Chem. Int. Ed. 57, 3974–3980 (2018).

    CAS  Google Scholar 

  9. 9.

    Finze, M. et al. Tris(trifluoromethyl)borane carbonyl, (CF3)3BCO—synthesis, physical, chemical and spectroscopic properties, gas phase and solid state structure. J. Am. Chem. Soc. 124, 15385–15398 (2002).

    CAS  PubMed  Google Scholar 

  10. 10.

    Glore, J. D., Rathke, J. W. & Schaeffer, R. Some reactions of triborane(7) and the structure of triborane(7) carbonyl. Inorg. Chem. 12, 2175–2178 (1973).

    CAS  Google Scholar 

  11. 11.

    Braunschweig, H. et al. Multiple complexation of CO and related ligands to a main-group element. Nature 522, 327–330 (2015).

    CAS  PubMed  Google Scholar 

  12. 12.

    Grant, L. N. et al. A planar Ti2P2 core assembled by reductive decarbonylation of O−C≡P and P−P radical coupling. Chem. Eur. J. 23, 6272–6276 (2017).

    CAS  PubMed  Google Scholar 

  13. 13.

    Puschmann, F. F. et al. Phosphination of carbon monoxide: a simple synthesis of sodium phosphaethynolate (NaOCP). Angew. Chem. Int. Ed. 50, 8420–8423 (2011).

    CAS  Google Scholar 

  14. 14.

    Hansmann, M. M., Jazzar, R. & Bertrand, G. Singlet (phosphino)phosphinidenes are electrophilic. J. Am. Chem. Soc. 138, 8356–8359 (2016).

    CAS  PubMed  Google Scholar 

  15. 15.

    Böhnke, J. et al. The synthesis of B2(SIDip)2 and its reactivity between the diboracumulenic and diborynic extremes. Angew. Chem. Int. Ed. 54, 13801–13805 (2015).

    Google Scholar 

  16. 16.

    Braunschweig, H. et al. Metal-free binding and coupling of carbon monoxide at a boron–boron triple bond. Nat. Chem. 5, 1025–1029 (2013).

    CAS  PubMed  Google Scholar 

  17. 17.

    Arrowsmith, M., Böhnke, J., Braunschweig, H. & Celik, M. A. Reactivity of a dihydrodiborene with CO: coordination, insertion, cleavage and spontaneous formation of a cyclic alkyne. Angew. Chem. Int. Ed. 56, 14287–14292 (2017).

    CAS  Google Scholar 

  18. 18.

    Zhang, H., Cao, Z., Wu, W. & Mo, Y. The transition-metal-like behavior of B2(NHC)2 in the activation of CO: HOMO–LUMO swap without photoinduction. Angew. Chem. Int. Ed. 57, 13076–13081 (2018).

    CAS  Google Scholar 

  19. 19.

    Majumdar, M. et al. Reductive cleavage of carbon monoxide by a disilenide. Angew. Chem. Int. Ed. 54, 8746–8750 (2015).

    CAS  Google Scholar 

  20. 20.

    Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).

    PubMed  Google Scholar 

  21. 21.

    Dobrovetsky, R. & Stephan, D. W. Stoichiometric metal-free reduction of CO in syn-gas. J. Am. Chem. Soc. 135, 4974–4977 (2013).

    CAS  PubMed  Google Scholar 

  22. 22.

    Devillard, M., de Bruin, B., Siegler, M. A. & van der Vlugt, J. I. Transition-metal-free cleavage of CO. Chem. Eur. J. 23, 13628–13632 (2017).

    CAS  PubMed  Google Scholar 

  23. 23.

    Lembke, R. R., Ferrante, R. F. & Weltner, W. Jr. SiCO, SiN2 and Si(CO)2 molecules: electron spin resonance and optical spectra at 4 K. J. Am. Chem. Soc. 99, 416–423 (1977).

    CAS  Google Scholar 

  24. 24.

    Grev, R. S. & Schaefer, H. F. III Reassignment of the structure of Si(CO)2 based on theoretically predicted IR spectra. J. Am. Chem. Soc. 111, 5691–5699 (1989).

    Google Scholar 

  25. 25.

    Zhou, M., Jiang, L. & Xu, Q. Reactions of silicon atoms and small clusters with CO: experimental and theoretical characterization of Si nCO (n = 1–5),Si2(CO)2, c-Si2(μ-O)(μ-CSi) and c-Si2(μ-O)(μ-CCO) in solid argon. J. Chem. Phys. 121, 10474–10482 (2004).

    CAS  PubMed  Google Scholar 

  26. 26.

    Goedecke, C., Leibold, M., Siemeling, U. & Frenking, G. When does carbonylation of carbenes yield ketenes? A theoretical study with implications for synthesis. J. Am. Chem. Soc. 133, 3557–3569 (2011).

    CAS  PubMed  Google Scholar 

  27. 27.

    Becerra, R. & Walsh, R. Silylene does react with carbon monoxide. J. Am. Chem. Soc. 122, 3246–3247 (2000).

    CAS  Google Scholar 

  28. 28.

    Becerra, R., Cannady, J. P. & Walsh, R. Silylene does react with carbon monoxide: some gas-phase kinetic and theoretical studies. J. Phys. Chem. A 105, 1897–1903 (2001).

    CAS  Google Scholar 

  29. 29.

    Chu, J. H., Beach, D. B., Estes, R. D. & Jasinski, J. M. Absolute rate constants for silylene reactions with diatomic molecules. Chem. Phys. Lett. 143, 135–139 (1988).

    CAS  Google Scholar 

  30. 30.

    Maier, G., Reisenauer, H.-P. & Egenolf, H. Quest for silaketene: a matrix-spectroscopic and theoretical study. Organometallics 18, 2155–2161 (1999).

    CAS  Google Scholar 

  31. 31.

    Pearsall, M. A. & West, R. The reactions of diorganosilylenes with carbon monoxide. J. Am. Chem. Soc. 110, 7228–7229 (1988).

    CAS  Google Scholar 

  32. 32.

    Arrington, C. A., Petty, J. T., Payne, S. E. & Haskins, W. C. K. The reaction of dimethylsilylene with carbon monoxide in low-temperature matrices. J. Am. Chem. Soc. 110, 6240–6241 (1988).

    CAS  PubMed  Google Scholar 

  33. 33.

    Tacke, M. et al. Complexes of decamethylsilicocene: Cp2*Si(CO) and Cp2*Si(N2). Z. Anorg. Allg. Chem. 619, 865–868 (1993).

    CAS  Google Scholar 

  34. 34.

    Bornemann, H. & Sander, W. Reactions of methyl(phenyl)silylene with CO and PH3—the formation of acid–base complexes. J. Organomet. Chem. 641, 156–164 (2002).

    CAS  Google Scholar 

  35. 35.

    Wang, Y. et al. Silicon-mediated selective homo- and heterocoupling of carbon monoxide. J. Am. Chem. Soc. 141, 626–634 (2019).

    CAS  PubMed  Google Scholar 

  36. 36.

    Protchenko, A. V. et al. Reduction of carbon oxides by an acyclic silylene: reductive coupling of CO. Angew. Chem. Int. Ed. 58, 1808–1812 (2019).

    CAS  Google Scholar 

  37. 37.

    Protchenko, A. V. et al. A stable two-coordinate acyclic silylene. J. Am. Chem. Soc. 134, 6500–6503 (2012).

    CAS  PubMed  Google Scholar 

  38. 38.

    Wang, X. et al. Room-temperature reaction of carbon monoxide with a stable diarylgermylene. J. Am. Chem. Soc. 131, 6912–6913 (2009).

    CAS  PubMed  Google Scholar 

  39. 39.

    Brown, Z. D. & Power, P. P. Mechanisms of reactions of open-shell, heavier group 14 derivatives with small molecules: nπ* back-bonding in isocyanide complexes, C–H activation under ambient conditions, CO coupling and ancillary molecular interactions. Inorg. Chem. 52, 6248–6259 (2013).

    CAS  PubMed  Google Scholar 

  40. 40.

    Chu, T. & Nikonov, G. I. Oxidative addition and reductive elimination at main-group element centers. Chem. Rev. 118, 3608–3680 (2018).

    CAS  PubMed  Google Scholar 

  41. 41.

    Krüger, J., Ganesamoorthy, C., John, L., Wölper, C. & Schulz, S. A general pathway for the synthesis of gallastibenes containing Ga=Sb double bonds. Chem. Eur. J. 24, 9157–9164 (2018).

    PubMed  Google Scholar 

  42. 42.

    Helling, C., Wölper, C. & Schulz, S. Synthesis of a gallaarsene {HC[C(Me)N-2,6-i-Pr2-C6H3]2}GaAsCp* containing a Ga=As double bond. J. Am. Chem. Soc. 140, 5053–5056 (2018).

    CAS  PubMed  Google Scholar 

  43. 43.

    Ganesamoorthy, C. et al. From stable Sb- and Bi-centered radicals to a compound with a Ga=Sb double bond. Nat. Commun. 9, 87 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Zhu, L., Zhang, J. & Cui, C. Intramolecular cyclopropanation of alkali-metal-substituted silylene with the aryl substituent of an N-heterocyclic framework. Inorg. Chem. 58, 12007–12010 (2019).

    CAS  PubMed  Google Scholar 

  45. 45.

    Gau, D. et al. Synthesis of a stable disilyne bisphosphine adduct and its non-metal-mediated CO2 reduction to CO. Angew. Chem. Int. Ed. 50, 1092–1096 (2011).

    CAS  Google Scholar 

  46. 46.

    Takeda, N., Suzuki, H., Tokitoh, N. & Okazaki, R. Reaction of a sterically hindered silylene with isocyanides: the first stable silylene–Lewis base complexes. J. Am. Chem. Soc. 119, 1456–1457 (1997).

    CAS  Google Scholar 

  47. 47.

    Takeda, N., Kajiwara, T., Suzuki, H., R. Okazaki, R. & Tokitoh, N. Synthesis and properties of the first stable silylene isocyanide complexes. Chem. Eur. J. 9, 3530–3543 (2003).

    CAS  PubMed  Google Scholar 

  48. 48.

    Kempter, A., Gemel, C. & Fischer, R. A. Oxidative addition of group 13 and 14 metal halides and alkyls to Ga(DDP) (DDP = bulky bisimidinate). Inorg. Chem. 47, 7279–7285 (2008).

    CAS  PubMed  Google Scholar 

  49. 49.

    Huber, K. P. & Herzberg. G. Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules 166 (Van Nostrand Reinhold Co, 1979).

  50. 50.

    Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, 2016).

  51. 51.

    Müller, T. The chemical shift tensor of silylenes. J. Organomet. Chem. 686, 251–256 (2003).

    Google Scholar 

  52. 52.

    Holthausen, M. C., Koch, W. & Apeloig, Y. Theory predicts triplet ground-state organic silylenes. J. Am. Chem. Soc. 121, 2623–2624 (1999).

    CAS  Google Scholar 

  53. 53.

    Blom, B. & Driess, M. in Structure and Bonding Vol. 156 (ed. Scheschkewitz, D.) 85–124 (Springer, 2014).

Download references


This work was supported by the University of Duisburg–Essen and the Alexander-von-Humboldt Foundation (a scholarship to L.S.). We thank the Deutsche Forschungsgemeinschaft for partial support within the Priority Program SPP 1807 (control of London dispersion interactions in molecular chemistry) and T. Benter and H. Kersten for mass spectroscopy measurements.

Author information




C.G., S.S. and P.R.S. conceived the experiments. S.S. and P.R.S. supervised the study. C.G. and J.S. performed the synthetic studies, C.W. the single-crystal X-ray diffraction studies, and L.S. the computational experiments. C.G., S.S. and P.R.S. wrote the manuscript, with input from all authors. All authors analysed the results and commented on the manuscript.

Corresponding authors

Correspondence to Peter R. Schreiner or Stephan Schulz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details including methods, synthetic procedures, characterization data (NMR, IR, UV–vis spectra), crystallographic details and computational details.

Crystallographic data

CIF for compound 1; CCDC reference 1943186

Crystallographic data

CIF for compound 2; CCDC reference 1943187

Crystallographic data

CIF for compound 3; CCDC reference 1943188

Crystallographic data

CIF for compound 4; CCDC reference 1943189

Crystallographic data

CIF for compound 5; CCDC reference 1943190

Crystallographic data

CIF for compound 6; CCDC reference 1967024

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ganesamoorthy, C., Schoening, J., Wölper, C. et al. A silicon–carbonyl complex stable at room temperature. Nat. Chem. 12, 608–614 (2020). https://doi.org/10.1038/s41557-020-0456-x

Download citation

Further reading