Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemoselective oxidative generation of ortho-quinone methides and tandem transformations

Abstract

ortho-Quinone methides are useful transient synthetic intermediates in organic synthesis. These species are most often generated in situ by the acid- or base-mediated transformation of phenols that have been pre-functionalized at a benzylic position, or by biomimetic oxidation of the corresponding ortho-alkylphenols with metal oxidants or transition-metal complexes. Here we describe a method for the transition-metal-free oxidative generation of o-QMs from ortho-alkylarenols, using hypoiodite catalysis under nearly neutral conditions, which can then be applied in one-pot tandem reactions. This method for the chemoselective oxidative generation of ortho-quinone methides may prove superior to previous methods with respect to environmental issues and scope, and can be applied to various tandem reactions such as inter- or intramolecular [4 + 2] cycloaddition, oxa-6π-electrocyclization, conjugate addition and spiroepoxidation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of o-QMs and synthetic application.
Fig. 2: Oxidative generation of o-QMs catalysed by ammonium hypoiodite.
Fig. 3: Inter- and intramolecular tandem oxidative [4 + 2] cycloaddition.
Fig. 4: Tandem oxidative conjugate addition.
Fig. 5: Oxidative spiroepoxidation of phenols.
Fig. 6: Reaction mechanism and enantioselective reactions.

Similar content being viewed by others

Data availability

All data generated and analysed during this study are included in this Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1893878 (8a), 1893879 (10ia), 1893880 (14a) and 1893881 (19f). Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Van de Water, R. W. & Pettus, T. R. R. o-Quinone methides: intermediates underdeveloped and underutilized in organic synthesis. Tetrahedron 58, 5367–5405 (2002).

    Article  CAS  Google Scholar 

  2. Rokita, S. E. (ed.) Quinone Methides (John Wiley and Sons, 2009).

  3. Ferreira, S. B., da Silva, Fd., Pinto, A. C., Gonzaga, D. T. & Ferreira, V. F. Syntheses of chromenes and chromanes via o-quinone methide intermediates. J. Heterocycl. Chem. 46, 1080–1097 (2009).

    Article  CAS  Google Scholar 

  4. Willis, N. J. & Bray, C. D. ortho-Quinone methides in natural product synthesis. Chem. Eur. J. 18, 9160–9173 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Jaworski, A. A. & Scheidt, K. A. Emerging roles of in situ generated quinone methides in metal-free catalysis. J. Org. Chem. 81, 10145–10153 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Peter, M. G. Chemical modifications of biopolymers by quinones and quinone methides. Angew. Chem. Int. Ed. 28, 555–570 (1989).

    Article  Google Scholar 

  7. Moore, H. W. Bioactivation as a model for drug design bioreductive alkylation. Science 197, 527–532 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Moore, R. F. & Waters, W. A. Some products formed from phenolic inhibitors during the autoxidation of cumene. J. Chem. Soc. 1954, 243–246 (1954).

    Article  Google Scholar 

  9. Liao, D., Li, H. & Lei, X. Efficient generation of ortho-quinone methide: application to the biomimetic syntheses of (±)-schefflone and tocopherol trimers. Org. Lett. 14, 18–21 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Osipov, D. V., Osyanin, V. A. & Klimochkin Y. N. Easy access to (±)-schefflone and espintanol. Synlett 917–919 (2012).

  11. Wu, B., Gao, X., Yan, Z., Chen, M.-W. & Zhou, Y.-G. C–H oxidation/Michael addition/cyclization cascade for enantioselective synthesis of functionalized 2-amino-4H-chromenes. Org. Lett. 17, 6134–6137 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Wong, Y. F., Wang, Z., Hong, W.-X. & Sun, J. A one-pot oxidation/cycloaddition cascade synthesis of 2,4-diaryl chromans via ortho-quinone methides. Tetrahedron 72, 2748–2751 (2016).

    Article  CAS  Google Scholar 

  13. Gebauer, K., Reuß, F., Spanka, M. & Schneider, C. Relay catalysis: manganese(III) phosphate catalyzed asymmetric addition of β-dicarbonyls to ortho-quinone methides generated by catalytic aerobic oxidation. Org. Lett. 19, 4588–4591 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Oguma, T. et al. Iron-catalyzed asymmetric inter- and intramolecular aerobic oxidative dearomatizing spirocyclization of 2-naphthols. Asian J. Org. Chem. https://doi.org/10.1002/ajoc.201900602 (2020).

  15. Uyanik, M. & Ishihara, K. Catalysis with in situ-generated (hypo)iodite ions for oxidative coupling reactions. ChemCatChem 4, 177–185 (2012).

    Article  CAS  Google Scholar 

  16. Finkbeiner, P. & Nachtsheim, B. J. Iodine in modern oxidation catalysis. Synthesis 45, 979–999 (2013).

    Article  CAS  Google Scholar 

  17. Chen, R., Chen, J., Zhang, J. & Wan, X. Combination of tetrabutylammonium iodide (TBAI) with tert-butyl hydroperoxide (TBHP): an efficient transition-metal-free system to construct various chemical bonds. Chem. Rec. 18, 1292–1305 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Becker, P., Duhamel, T., Stein, C. J., Reiher, M. & Muñiz, K. Cooperative light-activated iodine and photoredox catalysis for the amination of Csp3–H bonds. Angew. Chem. Int. Ed. 56, 8004–8008 (2017).

    Article  CAS  Google Scholar 

  19. Uyanik, M., Nishioka, K. & Ishihara, K. Ammonium hypoiodite-catalyzed peroxidative dearomatization of phenols. Heterocycles 95, 1132–1147 (2017).

    Article  CAS  Google Scholar 

  20. Uyanik, M., Hayashi, H. & Ishihara, K. High-turnover hypoiodite catalysis for asymmetric synthesis of tocopherols. Science 345, 291–294 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, B. & Gao, S. Recent advances in the application of Diels–Alder reactions involving o-quinodimethanes, aza-o-quinone methides and o-quinone methides in natural product total synthesis. Chem. Soc. Rev. 47, 7926–7953 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Patel, A., Netscher, T. & Rosenau, T. Stabilization of ortho-quinone methides by a bis(sulfonium ylide) derived from 2,5-dihydroxy-[1,4]benzoquinone. Tetrahedron Lett. 49, 2442–2445 (2008).

    Article  CAS  Google Scholar 

  23. Chen, P. K. C., Wong, Y. F., Yang, D. & Pettus, T. R. R. Nucleophilic imines and electrophilic o-quinone methides, a three-component assembly of assorted 3,4-dihydro-2H-1,3-benzoxazines. Org. Lett. 21, 7746–7749 (2019).

    Article  CAS  Google Scholar 

  24. Arduini, A., Bosi, A., Pochini, A. & Ungaro, R. o-Quinone methides 2. Stereoselectivity in cycloaddition reactions of o-quinone methides with vinyl ethers. Tetrahedron 41, 3095–3103 (1985).

    Article  CAS  Google Scholar 

  25. Dean, F. M. & Orabi, M. O. A. Spirans. Part 15. The effect of ring size upon the regioselective oxidative coupling of heterocyclic phenols. J. Chem. Soc. Perkin Trans. 1 1982, 2617–2624 (1982).

    Article  Google Scholar 

  26. Schröder, H. & Netscher, T. Determination of the absolute stereochemistry of vitamin E derived oxa-spiro compounds by NMR spectroscopy. Magn. Reson. Chem. 39, 701–708 (2001).

    Article  Google Scholar 

  27. Pathak, T. P. & Sigman, M. S. Applications of ortho-quinone methide intermediates in catalysis and asymmetric synthesis. J. Org. Chem. 76, 9210–9215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caruana, L., Fochi, M. & Bernardi, L. The emergence of quinone methides in asymmetric organocatalysis. Molecules 20, 11733–11764 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shestopalov, A. M. et al. Polyalkoxy substituted 4H-chromenes: synthesis by domino reaction and anticancer activity. ACS Comb. Sci. 14, 484–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Maalej, E. et al. Synthesis, biological assessment, and molecular modeling of racemic 7-aryl-9,10,11,12-tetrahydro-7H-benzo[7,8]chromeno[2,3-b]quinolin-8-amines as potential drugs for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 54, 750–763 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Adili, A., Tao, Z.-L., Chen, D.-F. & Han, Z.-Y. Quinine-catalyzed highly enantioselective cycloannulation of o-quinone methides with malononitrile. Org. Biomol. Chem. 13, 2247–2250 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Angle, S. R., Rainier, J. D. & Woytowicz, C. Synthesis and chemistry of quinone methide models for the anthracycline antitumor antibiotics. J. Org. Chem. 62, 5884–5892 (1997).

    Article  CAS  Google Scholar 

  33. Uyanik, M., Nishioka, K. & Ishihara, K. Ammonium hypoiodite-catalyzed oxidative dearomatizative azidation of arenols. Chem. Lett. 48, 353–356 (2019).

    Article  CAS  Google Scholar 

  34. Adelwöhrer, C., Rosenau, T., Kloser, E., Mereiter, K. & Netscher, T. Synthesis of 5a-α-tocopheryl azide and its reaction to 1-(5a-α-tocopheryl)-1,2,3-triazols by [2+3]-cycloaddition. Eur. J. Org. Chem. 2006, 2081–2086 (2006).

    Article  CAS  Google Scholar 

  35. Lahmann, M. & Thiem, J. Transformations of chromanol and tocopherol and synthesis of ascorbate conjugates. Tetrahedron 67, 1654–1664 (2011).

    Article  CAS  Google Scholar 

  36. Browne, E. C., Langford, S. C. & Abbott, B. M. Synthesis and effects of conjugated tocopherol analogues on peptide nucleic acid hybridization. Org. Biomol. Chem. 11, 6744–6750 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Lattanzi, A. Advances in asymmetric epoxidation of α,β-unsaturated carbonyl compounds: the organocatalytic approach. Curr. Org. Synth. 5, 117–133 (2008).

    Article  CAS  Google Scholar 

  38. Lifchits, O. et al. The cinchona primary amine-catalyzed asymmetric epoxidation and hydroperoxidation of α,β-unsaturated carbonyl compounds with hydrogen peroxide. J. Am. Chem. Soc. 135, 6677–6693 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. McLaughlin, M. F., Massolo, E., Liu, S. & Johnson, J. S. Enantioselective phenolic α-oxidation using H2O2 via an unusual double dearomatization mechanism. J. Am. Chem. Soc. 141, 2645–2651 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McLaughlin, M. F., Massolo, E., Cope, T. A. & Johnson, J. S. Phenolic oxidation using H2O2 via in situ generated para-quinone methides for the preparation of para-spiroepoxydienones. Org. Lett. 21, 6504–6507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adler, E., Brasen, S. & Miyake, H. Periodate oxidation of phenols. Acta Chem. Scand. 25, 2055–2069 (1971).

    Article  CAS  Google Scholar 

  42. Singh, V. Spiroepoxycyclohexa-2,4-dienones in organic synthesis. Acc. Chem. Res. 32, 324–334 (1999).

  43. Uyanik, M. et al. High-performance hypoiodite/hydrogen peroxide catalytic system for the oxylactonization of aliphatic γ-oxocarboxylic acids. Chem. Lett. 44, 387–389 (2015).

    Article  CAS  Google Scholar 

  44. Uyanik, M. & Ishihara, K. in Asymmetric Dearomatization Reactions (ed. You, S.-L.) 129–151 (Wiley-VCH, 2016).

  45. Bordwell, F. G. & Cheng, J. Substituent effects on the stabilities of phenoxyl radicals and the acidities of phenoxyl radical cations. J. Am. Chem. Soc. 113, 1736–1743 (1991).

    Article  CAS  Google Scholar 

  46. Kirihara, M. et al. Sodium hypochlorite pentahydrate crystals (NaOCl·5H2O): a convenient and environmentally benign oxidant for organic synthesis. Org. Process Res. Dev. 21, 1925–1937 (2017).

    Article  CAS  Google Scholar 

  47. Uyanik, M., Sasakura, N., Kuwahata, M., Ejima, Y. & Ishihara, K. Practical oxidative dearomatization of phenols with sodium hypochlorite pentahydrate. Chem. Lett. 44, 381–383 (2015).

    Article  CAS  Google Scholar 

  48. Uyanik, M., Sahara, N. & Ishihara, K. Regioselective oxidative chlorination of arenols using NaCl and oxone. Eur. J. Org. Chem. 2019, 27–31 (2019).

    Article  CAS  Google Scholar 

  49. Swenton, J. S., Carpenter, K., Cheng, Y., Kerns, M. L. & Morrow, G. W. Intramolecular anodic carbon-carbon bond-forming reactions of oxidized phenol intermediates leading to spirodienones. Structural effects on reactivity and evidence for a phenoxonium ion intermediate. J. Org. Chem. 58, 3308–3316 (1993).

    Article  CAS  Google Scholar 

  50. Gómez-Gallego, M. & Sierra, M. A. Kinetic isotope effects in the study of organometallic reaction mechanisms. Chem. Rev. 111, 4857–4863 (2011).

    Article  PubMed  CAS  Google Scholar 

  51. Shirakawa, S. et al. Tetraalkylammonium salts as hydrogen‐bonding catalysts. Angew. Chem. Int. Ed. 54, 15767–15770 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this project was partially provided by JSPS.KAKENHI (15H05755 (to K.I.), 15H05810 (to K.I.), 15H05484 (to M.U.), 18H01973 (to M.U.)), Inoue Research Award for Young Scientists (to M.U.), and the Program for Leading Graduate Schools: IGER Program in Green Natural Sciences (MEXT). We thank T. Yasui, K. Ohori, N. Sahara and O. Katade for their assistance during the initial investigations. We thank K. Nishimura for electrospray ionization-mass spectrometry analysis. We are grateful to the Kaneka Corporation and Mitsubishi Gas Chemical Co. for providing NaOCl·5H2O and 60 wt% H2O2, respectively.

Author information

Authors and Affiliations

Authors

Contributions

M.U. and K.I. developed the concept and conceived the experiments. K.N. and R.K. performed the experiments. K.N., R.K. and M.U. analysed the data. M.U. prepared the manuscript with assistance from K.I.

Corresponding author

Correspondence to Kazuaki Ishihara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, product characterization, X-ray crystallographic analysis and mechanistic studies.

Crystallographic data

Crystallographic data for compound 8a. CCDC reference 1893878.

Crystallographic data

Crystallographic data for compound 10ia. CCDC reference 1893879.

Crystallographic data

Crystallographic data for compound 14a. CCDC reference 1893880.

Crystallographic data

Structure factors file for compound 14a. CCDC reference 1893880.

Crystallographic data

Crystallographic data for compound 19f. CCDC reference 1893881.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uyanik, M., Nishioka, K., Kondo, R. et al. Chemoselective oxidative generation of ortho-quinone methides and tandem transformations. Nat. Chem. 12, 353–362 (2020). https://doi.org/10.1038/s41557-020-0433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0433-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing