Proteomimetics as protein-inspired scaffolds with defined tertiary folding patterns

Abstract

Proteins have evolved as a variable platform that provides access to molecules with diverse shapes, sizes and functions. These features have inspired chemists for decades to seek artificial mimetics of proteins with improved or novel properties. Such work has focused primarily on small protein fragments, often isolated secondary structures; however, there has lately been a growing interest in the design of artificial molecules that mimic larger, more complex tertiary folds. In this Perspective, we define these agents as ‘proteomimetics’ and discuss the recent advances in the field. Proteomimetics can be divided into three categories: protein domains with side-chain functionality that alters the native linear-chain topology; protein domains in which the chemical composition of the polypeptide backbone has been partially altered; and protein-like folded architectures that are composed entirely of non-natural monomer units. We give an overview of these proteomimetic approaches and outline remaining challenges facing the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of protein structures and their mimetics.
Fig. 2: Examples of proteomimetics based on altered chain topology.
Fig. 3: Examples of proteomimetics based on partially artificial backbone compositions.
Fig. 4: Examples of proteomimetics based on entirely artificial backbone compositions.

References

  1. 1.

    Sali, A., Shakhnovich, E. & Karplus, M. How does a protein fold? Nature 369, 248–251 (1994).

  2. 2.

    Gante, J. Peptidomimetics — tailored enzyme inhibitors. Angew. Chem. Int. Ed. 33, 1699–1720 (1994).

  3. 3.

    Pelay-Gimeno, M., Glas, A., Koch, O. & Grossmann, T. N. Structure-based design of inhibitors of protein–protein interactions: mimicking peptide binding epitopes. Angew. Chem. Int. Ed. 54, 8896–8927 (2015).

  4. 4.

    Clercq, E. D. The design of drugs for HIV and HCV. Nat. Rev. Drug. Discov. 6, 1001–1018 (2007).

  5. 5.

    Azzarito, V., Long, K., Murphy, N. S. & Wilson, A. J. Inhibition of α-helix-mediated protein–protein interactions using designed molecules. Nat. Chem. 5, 161–173 (2013).

  6. 6.

    Robertson, N. S. & Spring, D. R. Using peptidomimetics and constrained peptides as valuable tools for inhibiting protein–protein interactions. Molecules 23, 959 (2018).

  7. 7.

    Scott, D. E., Bayly, A. R., Abell, C. & Skidmore, J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug. Discov. 15, 533–550 (2016).

  8. 8.

    Kent, S. B. H. Novel protein science enabled by total chemical synthesis. Protein Sci. 28, 313–328 (2019).

  9. 9.

    Krall, N., da Cruz, F. P., Boutureira, O. & Bernardes, G. J. L. Site-selective protein-modification chemistry for basic biology and drug development. Nat. Chem. 8, 102–112 (2016).

  10. 10.

    Renata, H., Wang, Z. J. & Arnold, F. H. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew. Chem. Int. Ed. 54, 3351–3367 (2015).

  11. 11.

    Huang, P. S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

  12. 12.

    Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

  13. 13.

    Orner, B. P., Ernst, J. T. & Hamilton, A. D. Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an α-helix. J. Am. Chem. Soc. 123, 5382–5383 (2001).

  14. 14.

    Rennie, Y. K., McIntyre, P. J., Akindele, T., Bayliss, R. & Jamieson, A. G. A TPX2 proteomimetic has enhanced affinity for Aurora-A due to hydrocarbon stapling of a helix. ACS Chem. Biol. 11, 3383–3390 (2016).

  15. 15.

    Dombkowski, A. A., Sultana, K. Z. & Craig, D. B. Protein disulfide engineering. FEBS Lett. 588, 206–212 (2014).

  16. 16.

    Marfey, P. S., Nowak, H., Uziel, M. & Yphantis, D. A. Reaction of bovine pancreatic ribonuclease A with 1,5-difluoro-2,4-dinitrobenzene. J. Biol. Chem. 240, 3264–3269 (1965).

  17. 17.

    Hartman, F. C. & Wold, F. Bifunctional reagents. Cross-linking of pancreatic ribonuclease with a diimido ester. J. Am. Chem. Soc. 88, 3890–3891 (1966).

  18. 18.

    Uy, R. & Wold, F. in Protein Crosslinking: Biochemical and Molecular Aspects (ed. Friedman, M.) 169–186 (Springer, 1977).

  19. 19.

    Lin, S. H., Konishi, Y., Denton, M. E. & Scheraga, H. A. Influence of an extrinsic cross-link on the folding pathway of ribonuclease A. Conformational and thermodynamic analysis of cross-linked (lysine7-lysine41)-ribonuclease A. Biochemistry 23, 5504–5512 (1984).

  20. 20.

    Luhmann, T., Mong, S. K., Simon, M. D., Meinel, L. & Pentelute, B. L. A perfluoroaromatic abiotic analog of H2 relaxin enabled by rapid flow-based peptide synthesis. Org. Biomol. Chem. 14, 3345–3349 (2016).

  21. 21.

    Martinez-Saez, N. et al. Oxetane grafts installed site-selectively on native disulfides to enhance protein stability and activity in vivo. Angew. Chem. Int. Ed. 56, 14963–14967 (2017).

  22. 22.

    Ekblad, T. et al. Synthesis and chemoselective intramolecular crosslinking of a HER2-binding affibody. Biopolymers 92, 116–123 (2009).

  23. 23.

    Lindgren, J. & Karlstrom, A. E. Intramolecular thioether crosslinking of therapeutic proteins to increase proteolytic stability. ChemBioChem 15, 2132–2138 (2014).

  24. 24.

    Moore, E. J., Zorine, D., Hansen, W. A., Khare, S. D. & Fasan, R. Enzyme stabilization via computationally guided protein stapling. Proc. Natl Acad. Sci. USA 114, 12472–12477 (2017).

  25. 25.

    Pelay-Gimeno, M., Bange, T., Hennig, S. & Grossmann, T. N. In situ cyclization of native proteins: structure-based design of a bicyclic enzyme. Angew. Chem. Int. Ed. 57, 11164–11170 (2018).

  26. 26.

    Robinson, J. A. β-hairpin peptidomimetics: design, structures and biological activities. Acc. Chem. Res. 41, 1278–1288 (2008).

  27. 27.

    Xiao, Q. et al. Stapling of two PEGylated side chains increases the conformational stability of the WW domain via an entropic effect. Org. Biomol. Chem. 16, 8933–8939 (2018).

  28. 28.

    Mutter, M. et al. Template-assembled synthetic proteins with 4-helix-bundle topology. Total chemical synthesis and conformational studies. J. Am. Chem. Soc. 114, 1463–1470 (1992).

  29. 29.

    Sasaki, T. & Kaiser, E. T. Synthesis and structural stability of helichrome as an artificial hemeproteins. Biopolymers 29, 79–88 (1990).

  30. 30.

    Lupas, A. N. & Bassler, J. Coiled coils — a model system for the 21st century. Trends Biochem. Sci. 42, 130–140 (2017).

  31. 31.

    Beesley, J. L. & Woolfson, D. N. The de novo design of α-helical peptides for supramolecular self-assembly. Curr. Opin. Biotechnol. 58, 175–182 (2019).

  32. 32.

    Wuo, M. G., Hong, S. H., Singh, A. & Arora, P. S. Synthetic control of tertiary helical structures in short peptides. J. Am. Chem. Soc. 140, 16284–16290 (2018).

  33. 33.

    Wuo, M. G., Mahon, A. B. & Arora, P. S. An effective strategy for stabilizing minimal coiled coil mimetics. J. Am. Chem. Soc. 137, 11618–11621 (2015).

  34. 34.

    Wang, C. et al. Site-specific isopeptide bridge tethering of chimeric gp41 N-terminal heptad repeat helical trimers for the treatment of HIV-1 infection. Sci. Rep. 6, 32161 (2016).

  35. 35.

    Timmerman, P., Beld, J., Puijk, W. C. & Meloen, R. H. Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. ChemBioChem 6, 821–824 (2005).

  36. 36.

    Heinis, C. & Winter, G. Encoded libraries of chemically modified peptides. Curr. Opin. Chem. Biol. 26, 89–98 (2015).

  37. 37.

    Dang, B. B. et al. De novo design of covalently constrained mesosize protein scaffolds with unique tertiary structures. Proc. Natl Acad. Sci. USA 114, 10852–10857 (2017).

  38. 38.

    Mueller, C. & Grossmann, T. N. Coiled-coil peptide beacon: a tunable conformational switch for protein detection. Angew. Chem. Int. Ed. 57, 17079–17083 (2018).

  39. 39.

    Lou, C. G. et al. Peptide-oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic. Nat. Commun. 7, 12294 (2016).

  40. 40.

    Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. A field guide to foldamers. Chem. Rev. 101, 3893–4012 (2001).

  41. 41.

    Bautista, A. D., Craig, C. J., Harker, E. A. & Schepartz, A. Sophistication of foldamer form and function in vitro and in vivo. Curr. Opin. Chem. Biol. 11, 685–692 (2007).

  42. 42.

    Goodman, C. M., Choi, S., Shandler, S. & DeGrado, W. F. Foldamers as versatile frameworks for the design and evolution of function. Nat. Chem. Biol. 3, 252–262 (2007).

  43. 43.

    Gellman, S. H. Foldamers: a manifesto. Acc. Chem. Res. 31, 173–180 (1998).

  44. 44.

    Rajarathnam, K. et al. Neutrophil activation by monomeric interleukin-8. Science 264, 90–92 (1994).

  45. 45.

    Chapman, E., Thorson, J. S. & Schultz, P. G. Mutational analysis of backbone hydrogen bonds in staphylococcal nuclease. J. Am. Chem. Soc. 119, 7151–7152 (1997).

  46. 46.

    Lu, W., Qasim, M. A., Laskowski, M. & Kent, S. B. H. Probing intermolecular main chain hydrogen bonding in serine proteinase–protein inhibitor complexes: chemical synthesis of backbone-engineered turkey ovomucoid third domain. Biochemistry 36, 673–679 (1997).

  47. 47.

    Beligere, G. S. & Dawson, P. E. Design, synthesis, and characterization of 4-ester CI2, a model for backbone hydrogen bonding in protein α-helices. J. Am. Chem. Soc. 122, 12079–12082 (2000).

  48. 48.

    Wales, T. E. & Fitzgerald, M. C. The energetic contribution of backbone–backbone hydrogen bonds to the thermodynamic stability of a hyperstable P22 Arc repressor mutant. J. Am. Chem. Soc. 123, 7709–7710 (2001).

  49. 49.

    Deechongkit, S. et al. Context-dependent contributions of backbone hydrogen bonding to β-sheet folding energetics. Nature 430, 101–105 (2004).

  50. 50.

    Baca, M., Kent, S. B. H. & Alewood, P. F. Structural engineering of the HIV-1 protease molecule with a β-turn mimic of fixed geometry. Protein Sci. 2, 1085–1091 (1993).

  51. 51.

    Jean, F. et al. Synthesis and structural and functional evaluation of a protein modified with a β-turn mimic. J. Am. Chem. Soc. 120, 6076–6083 (1998).

  52. 52.

    Viles, J. H. et al. Design, synthesis and structure of a zinc finger with an artificial β-turn. J. Mol. Biol. 279, 973–986 (1998).

  53. 53.

    Kaul, R., Angeles, A. R., Jäger, M., Powers, E. T. & Kelly, J. W. Incorporating β-turns and a turn mimetic out of context in loop 1 of the WW domain affords cooperatively folded β-sheets. J. Am. Chem. Soc. 123, 5206–5212 (2001).

  54. 54.

    Arnold, U. et al. Protein prosthesis: a semisynthetic enzyme with a β-peptide reverse turn. J. Am. Chem. Soc. 124, 8522–8523 (2002).

  55. 55.

    Schmidtgall, B. et al. Dissecting mechanism of coupled folding and binding of an intrinsically disordered protein by chemical synthesis of conformationally constrained analogues. Chem. Commun. 53, 7369–7372 (2017).

  56. 56.

    David, R. et al. Artificial chemokines: combining chemistry and molecular biology for the elucidation of interleukin-8 functionality. J. Am. Chem. Soc. 130, 15311–15317 (2008).

  57. 57.

    Burslem, G. M. et al. Towards “bionic” proteins: replacement of continuous sequences from HIF-1α with proteomimetics to create functional p300 binding HIF-1α mimics. Chem. Commun. 52, 5421–5424 (2016).

  58. 58.

    Lombardo, C. M. et al. Design and structure determination of a composite zinc finger containing a nonpeptide foldamer helical domain. J. Am. Chem. Soc. 141, 2516–2525 (2019).

  59. 59.

    Lee, B.-C. & Zuckermann, R. N. Protein side-chain translocation mutagenesis via incorporation of peptoid residues. ACS Chem. Biol. 6, 1367–1374 (2011).

  60. 60.

    Mayer, C., Müller, M. M., Gellman, S. H. & Hilvert, D. Building proficient enzymes with foldamer prostheses. Angew. Chem. Int. Ed. 53, 6978–6981 (2014).

  61. 61.

    Hegedüs, Z. et al. Foldameric α/β-peptide analogs of the β-sheet-forming antiangiogenic anginex: structure and bioactivity. J. Am. Chem. Soc. 135, 16578–16584 (2013).

  62. 62.

    Cheng, P.-N., Liu, C., Zhao, M., Eisenberg, D. & Nowick, J. S. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity. Nat. Chem. 4, 927–933 (2012).

  63. 63.

    Kar, K. et al. β-Hairpin-mediated nucleation of polyglutamine amyloid formation. J. Mol. Biol. 425, 1183–1197 (2013).

  64. 64.

    Kar, K. et al. Backbone engineering within a latent β-hairpin structure to design inhibitors of polyglutamine amyloid formation. J. Mol. Biol. 429, 308–323 (2017).

  65. 65.

    Kreutzer, A. G. & Nowick, J. S. Elucidating the structures of amyloid oligomers with macrocyclic β-hairpin peptides: insights into Alzheimer’s disease and other amyloid diseases. Acc. Chem. Res. 51, 706–718 (2018).

  66. 66.

    Green, B. R. et al. Conotoxins containing nonnatural backbone spacers: cladistic-based design, chemical synthesis, and improved analgesic activity. Chem. Biol. 14, 399–407 (2007).

  67. 67.

    Mong, S. K. et al. Heterochiral knottin protein: folding and solution structure. Biochemistry 56, 5720–5725 (2017).

  68. 68.

    Haase, H. S. et al. Extending foldamer design beyond α-helix mimicry: α/β-peptide inhibitors of vascular endothelial growth factor signaling. J. Am. Chem. Soc. 134, 7652–7655 (2012).

  69. 69.

    Reinert, Z. E., Lengyel, G. A. & Horne, W. S. Protein-like tertiary folding behavior from heterogeneous backbones. J. Am. Chem. Soc. 135, 12528–12531 (2013).

  70. 70.

    George, K. L. & Horne, W. S. Foldamer tertiary structure through sequence-guided protein backbone alteration. Acc. Chem. Res. 51, 1220–1228 (2018).

  71. 71.

    George, K. L. & Horne, W. S. Heterogeneous-backbone foldamer mimics of zinc finger tertiary structure. J. Am. Chem. Soc. 139, 7931–7938 (2017).

  72. 72.

    Checco, J. W. et al. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold. Proc. Natl Acad. Sci. USA 112, 4552–4557 (2015).

  73. 73.

    Werner, H. M., Estabrooks, S. K., Preston, G. M., Brodsky, J. L. & Horne, W. S. Exploring the functional consequences of protein backbone alteration in ubiquitin through native chemical ligation. ChemBioChem 20, 7752–7755 (2019).

  74. 74.

    Cabalteja, C. C., Mihalko, D. S. & Horne, W. S. Heterogeneous-backbone foldamer mimics of a computationally designed, disulfide-rich miniprotein. ChemBioChem 20, 103–110 (2019).

  75. 75.

    Guichard, G. & Huc, I. Synthetic foldamers. Chem. Commun. 47, 5933–5941 (2011).

  76. 76.

    Daniels, D. S., Petersson, E. J., Qiu, J. X. & Schepartz, A. High-resolution structure of a β-peptide bundle. J. Am. Chem. Soc. 129, 1532–1533 (2007).

  77. 77.

    Collie, G. W. et al. Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation. Nat. Chem. 7, 871–878 (2015).

  78. 78.

    Miller, J. P., Melicher, M. S. & Schepartz, A. Positive allostery in metal ion binding by a cooperatively folded β-peptide bundle. J. Am. Chem. Soc. 136, 14726–14729 (2014).

  79. 79.

    Wang, P. S. P., Nguyen, J. B. & Schepartz, A. Design and high-resolution structure of a β3-peptide bundle catalyst. J. Am. Chem. Soc. 136, 6810–6813 (2014).

  80. 80.

    Bécart, D. et al. Helical oligourea foldamers as powerful hydrogen bonding catalysts for enantioselective C–C bond-forming reactions. J. Am. Chem. Soc. 139, 12524–12532 (2017).

  81. 81.

    Collie, G. W. et al. Molecular recognition within the cavity of a foldamer helix bundle: encapsulation of primary alcohols in aqueous conditions. J. Am. Chem. Soc. 139, 6128–6137 (2017).

  82. 82.

    Lee, B.-C., Zuckermann, R. N. & Dill, K. A. Folding a nonbiological polymer into a compact multihelical structure. J. Am. Chem. Soc. 127, 10999–11009 (2005).

  83. 83.

    Chandramouli, N. et al. Iterative design of a helically folded aromatic oligoamide sequence for the selective encapsulation of fructose. Nat. Chem. 7, 334–341 (2015).

  84. 84.

    De, S. et al. Designing cooperatively folded abiotic uni- and multimolecular helix bundles. Nat. Chem. 10, 51–57 (2018).

  85. 85.

    Lamouroux, A. et al. Controlling dipole orientation through curvature: aromatic foldamer bent β-sheets and helix–sheet–helix architectures. J. Am. Chem. Soc. 139, 14668–14675 (2017).

  86. 86.

    Atcher, J. et al. Aromatic β-sheet foldamers based on tertiary squaramides. Chem. Commun. 55, 10392–10395 (2019).

  87. 87.

    Mazzier, D., De, S., Wicher, B., Maurizot, V. & Huc, I. Interplay of secondary and tertiary folding in abiotic foldamers. Chem. Sci. 10, 6984–6991 (2019).

  88. 88.

    Hayashi, T., Hilvert, D. & Green, A. P. Engineered metalloenzymes with non-canonical coordination environments. Chem. Eur. J. 24, 11821–11830 (2018).

  89. 89.

    Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

  90. 90.

    Lee, H. S. & Schultz, P. G. Biosynthesis of a site-specific DNA cleaving protein. J. Am. Chem. Soc. 130, 13194–13195 (2008).

  91. 91.

    Drienovská, I., Rioz-Martínez, A., Draksharapu, A. & Roelfes, G. Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 6, 770–776 (2015).

  92. 92.

    Drienovská, I. et al. Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid. Chem. Sci. 8, 7228–7235 (2017).

  93. 93.

    Obexer, R. et al. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 9, 50–56 (2016).

  94. 94.

    Spencer, R. K., Li, H. & Nowick, J. S. X-ray crystallographic structures of trimers and higher-order oligomeric assemblies of a peptide derived from Aβ17–36. J. Am. Chem. Soc. 136, 5595–5598 (2014).

Download references

Acknowledgements

We thank P. Arora and B. Pentelute for providing coordinates of proteomimetic structures from their published work. T.N.G. is grateful for support by the European Research Council (ERC starting grant number 678623). W.S.H. thanks the National Institutes of Health (GM107161) for financial support.

Author information

W.S.H. and T.N.G developed the concept, researched and wrote the manuscript.

Correspondence to W. Seth Horne or Tom N. Grossmann.

Ethics declarations

Competing interests

T.N.G. is listed as an inventor on a patent application related to the INCYPRO stabilization approach.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horne, W.S., Grossmann, T.N. Proteomimetics as protein-inspired scaffolds with defined tertiary folding patterns. Nat. Chem. (2020). https://doi.org/10.1038/s41557-020-0420-9

Download citation