Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nature-inspired protein ligation and its applications

Abstract

The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of the enzymatic toolbox for protein ligation-mediated polypeptide engineering covered in this Review.
Fig. 2: Biochemistry of protein and peptide ligations mediated by sortase and butelase-1.
Fig. 3: Biochemistry of protease-based protein and peptide ligations.
Fig. 4: Biochemistry of the isopeptide bond formation mediated by transglutaminases.
Fig. 5: Molecular superglue-mediated isopeptide bond formation.
Fig. 6: Ubiquitin and ubiquitin-like modifier ligase-mediated isopeptide bond formation and its applications.
Fig. 7: Mechanism of intein-mediated protein ligation.
Fig. 8: Split intein-based strategies for generating semisynthetic proteins.
Fig. 9: Strategies for conditional protein splicing (CPS).
Fig. 10: Cellular protein manipulation strategies using inteins.

Similar content being viewed by others

References

  1. Usmani, S. S. et al. THPdb: database of FDA-approved peptide and protein therapeutics. PLoS ONE 12, e0181748 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thompson, R. E. & Muir, T. W. Chemoenzymatic semisynthesis of proteins. Chem. Rev. 120, 3051–3126 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Conibear, A. C. Deciphering protein post-translational modifications using chemical biology tools. Nat. Rev. Chem. 4, 674–695 (2020).

    Article  CAS  Google Scholar 

  4. Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18, 327–344 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Muona, M., Aranko, A. S., Raulinaitis, V. & Iwaï, H. Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro. Nat. Protoc. 5, 574–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Sohrabi, C., Foster, A. & Tavassoli, A. Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery. Nat. Rev. Chem. 4, 90–101 (2020).

    Article  CAS  Google Scholar 

  7. Sornay, C., Vaur, V., Wagner, A. & Chaubet, G. An overview of chemo- and site-selectivity aspects in the chemical conjugation of proteins. R. Soc. Open Sci. 9, 211563 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chalker, J. M. & Davis, B. G. Chemical mutagenesis: selective post-expression interconversion of protein amino acid residues. Curr. Opin. Chem. Biol. 14, 781–789 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Wright, T. H. et al. Posttranslational mutagenesis: a chemical strategy for exploring protein side-chain diversity. Science 354, aag1465-3 (2016).

    Article  Google Scholar 

  10. Bergmann, M. & Fraenkel-Conrat, H. The enzymatic synthesis of peptide bonds. J. Biol. Chem. 124, 1–6 (1938).

    Article  CAS  Google Scholar 

  11. Aliashkevich, A. & Cava, F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J. 289, 4718–4730 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Spirig, T., Weiner, E. M. & Clubb, R. T. Sortase enzymes in Gram-positive bacteria. Mol. Microbiol. 82, 1044–1059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pishesha, N., Ingram, J. R. & Ploegh, H. L. Sortase A: a model for transpeptidation and its biological applications. Annu. Rev. Cell Dev. Biol. 34, 163–188 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Ilangovan, U., Ton-That, H., Iwahara, J., Schneewind, O. & Clubb, R. T. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc. Natl Acad. Sci. USA 98, 6056–6061 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mao, H., Hart, S. A., Schink, A. & Pollok, B. A. Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc. 126, 2670–2671 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt, M., Toplak, A., Quaedflieg, P. J. & Nuijens, T. Enzyme-mediated ligation technologies for peptides and proteins. Curr. Opin. Chem. Biol. 38, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Williamson, D. J., Fascione, M. A., Webb, M. E. & Turnbull, W. B. Efficient N-terminal labeling of proteins by use of sortase. Angew. Chem. Int. Ed. 51, 9377–9380 (2012).

    Article  CAS  Google Scholar 

  18. Williamson, D. J., Webb, M. E. & Turnbull, W. B. Depsipeptide substrates for sortase-mediated N-terminal protein ligation. Nat. Protoc. 9, 253–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Zuo, C. et al. Thioester-assisted sortase-A-mediated ligation. Angew. Chem. Int. Ed. 61, e202201887 (2022).

    Article  CAS  Google Scholar 

  20. Dorr, B. M., Ham, H. O., An, C., Chaikof, E. L. & Liu, D. R. Reprogramming the specificity of sortase enzymes. Proc. Natl Acad. Sci. USA 111, 13343–13348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Freund, C. & Schwarzer, D. Engineered sortases in peptide and protein chemistry. ChemBioChem 22, 1347–1356 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirakawa, H., Ishikawa, S. & Nagamune, T. Ca2+-independent sortase-A exhibits high selective protein ligation activity in the cytoplasm of Escherichia coli. Biotechnol. J. 10, 1487–1492 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Podracky, C. J. et al. Laboratory evolution of a sortase enzyme that modifies amyloid-β protein. Nat. Chem. Biol. 17, 317–325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, L. et al. Improved variants of SrtA for site-specific conjugation on antibodies and proteins with high efficiency. Sci. Rep. 6, 31899 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Warden-Rothman, R., Caturegli, I., Popik, V. & Tsourkas, A. Sortase-tag expressed protein ligation: combining protein purification and site-specific bioconjugation into a single step. Anal. Chem. 85, 11090–11097 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Wöll, S., Bachran, C., Schiller, S., Swee, L. K. & Scherließ, R. Sortase-A mediated chemoenzymatic lipidation of single-domain antibodies for cell membrane engineering. Eur. J. Pharm. Biopharm. 153, 121–129 (2020).

    Article  PubMed  Google Scholar 

  27. Fauser, J., Savitskiy, S., Fottner, M., Trauschke, V. & Gulen, B. Sortase-mediated quantifiable enzyme immobilization on magnetic nanoparticles. Bioconjug. Chem. 31, 1883–1892 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Gébleux, R., Briendl, M., Grawunder, U. & Beerli, R. R. in Enzyme-Mediated Ligation Methods (eds Nuijens, T. & Schmidt, M.) 1–13 (Springer, 2019).

  29. Strijbis, K., Spooner, E. & Ploegh, H. L. Protein ligation in living cells using sortase. Traffic 13, 780–789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fottner, M. et al. Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase. Nat. Chem. Biol. 15, 276–284 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Tang, T. M. S. & Luk, L. Y. P. Asparaginyl endopeptidases: enzymology, applications and limitations. Org. Biomol. Chem. 19, 5048–5062 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gruis (Fred), D. & Selinger, D. A. & Curran, J. M. & Jung, R. Redundant proteolytic mechanisms process seed storage proteins in the absence of seed-type members of the vacuolar processing enzyme family of cysteine proteases. Plant Cell 14, 2863–2882 (2002).

    Article  Google Scholar 

  33. James, A. M. et al. The macrocyclizing protease butelase 1 remains autocatalytic and reveals the structural basis for ligase activity. Plant J. 98, 988–999 (2019).

    CAS  PubMed  Google Scholar 

  34. Nguyen, G. K. T. et al. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat. Chem. Biol. 10, 732–738 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen, G. K. T. et al. Butelase 1: a versatile ligase for peptide and protein macrocyclization. J. Am. Chem. Soc. 137, 15398–15401 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen, G. K. T. et al. Butelase-mediated cyclization and ligation of peptides and proteins. Nat. Protoc. 11, 1977–1988 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Hemu, X., Zhang, X., Bi, X., Liu, C.-F. & Tam, J. P. in Enzyme-Mediated Ligation Methods (eds Nuijens, T. & Schmidt, M.) 83–109 (Springer, 2019).

  38. Nguyen, G. K. T., Hemu, X., Quek, J.-P. & Tam, J. P. Butelase-mediated macrocyclization of D-amino-acid-containing peptides. Angew. Chem. Int. Ed. 55, 12802–12806 (2016).

    Article  CAS  Google Scholar 

  39. Lee, A. C., Harris, J. L., Khanna, K. K. & Hong, J.-H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci. 20, 2383 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cao, Y., Nguyen, G. K. T., Tam, J. P. & Liu, C.-F. Butelase-mediated synthesis of protein thioesters and its application for tandem chemoenzymatic ligation. Chem. Commun. 51, 17289–17292 (2015).

    Article  CAS  Google Scholar 

  41. Bi, X. et al. Enzymatic engineering of live bacterial cell surfaces using butelase 1. Angew. Chem. Int. Ed. 56, 7822–7825 (2017).

    Article  CAS  Google Scholar 

  42. Cao, Y., Nguyen, G. K. T., Chuah, S., Tam, J. P. & Liu, C.-F. Butelase-mediated ligation as an efficient bioconjugation method for the synthesis of peptide dendrimers. Bioconjug. Chem. 27, 2592–2596 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen, G. K. T., Cao, Y., Wang, W., Liu, C. F. & Tam, J. P. Site-specific N-terminal labeling of peptides and proteins using butelase 1 and thiodepsipeptide. Angew. Chem. Int. Ed. 54, 15694–15698 (2015).

    Article  CAS  Google Scholar 

  44. Harmand, T. J. et al. One-pot dual labeling of IgG 1 and preparation of C-to-C fusion proteins through a combination of sortase A and butelase 1. Bioconjug. Chem. 29, 3245–3249 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nuijens, T., Toplak, A., Schmidt, M., Ricci, A. & Cabri, W. Natural occurring and engineered enzymes for peptide ligation and cyclization. Front. Chem. 7, 829 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao, J. et al. Enzymatic properties of recombinant ligase butelase-1 and its application in cyclizing food-derived angiotensin I-converting enzyme inhibitory peptides. J. Agric. Food Chem. 69, 5976–5985 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, R. et al. Engineering a catalytically efficient recombinant protein ligase. J. Am. Chem. Soc. 139, 5351–5358 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Harris, K. S. et al. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nat. Commun. 6, 10199 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Rehm, F. B. H. et al. Site-specific sequential protein labeling catalyzed by a single recombinant ligase. J. Am. Chem. Soc. 141, 17388–17393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu, Z. et al. Oa AEP1-mediated PNA–protein conjugation enables erasable imaging of membrane protein. Chem. Commun. 58, 8448–8451 (2021).

    Article  Google Scholar 

  51. López-Otín, C. & Bond, J. S. Proteases: multifunctional enzymes in life and disease. J. Biol. Chem. 283, 30433–30437 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Goettig, P. Reversed proteolysis — proteases as peptide ligases. Catalysts 11, 33 (2021).

    Article  CAS  Google Scholar 

  53. Razzaq, A. et al. Microbial proteases applications. Front. Bioeng. Biotechnol. 7, 110 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Siezen, R. J. & Leunissen, J. A. M. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci. 6, 501–523 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rao, M. B., Tanksale, A. M., Ghatge, M. S. & Deshpande, V. V. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597–635 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carter, P., Nilsson, B., Burnier, J. P., Burdick, D. & Wells, J. A. Engineering subtilisin BPN′ for site-specific proteolysis. Proteins Struct. Funct. Bioinform. 6, 240–248 (1989).

    Article  CAS  Google Scholar 

  57. Ballinger, M. D., Tom, J. & Wells, J. A. Designing subtilisin BPN’ to cleave substrates containing dibasic residues. Biochemistry 34, 13312–13319 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Abrahmsen, L. et al. Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry 30, 4151–4159 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Weeks, A. M. & Wells, J. A. Subtiligase-catalyzed peptide ligation. Chem. Rev. 120, 3127–3160 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Shane, A. & Wells, J. A. Selection for improved subtiligases by phage display. Proc. Natl Acad. Sci. USA 96, 9497–9502 (1999).

    Article  Google Scholar 

  61. Strausberg, S. L. et al. Directed evolution of a subtilisin with calcium-independent stability. Biotechnology (N Y) 13, 669–673 (1995).

    CAS  PubMed  Google Scholar 

  62. Chang, T. K., Jackson, D. Y., Burnier, J. P. & Wells, J. A. Subtiligase: a tool for semisynthesis of proteins. Proc. Natl Acad. Sci. USA 91, 12544–12548 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Weeks, A. M. & Wells, J. A. Engineering peptide ligase specificity by proteomic identification of ligation sites. Nat. Chem. Biol. 14, 50–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Henager, S. H. et al. Enzyme-catalyzed expressed protein ligation. Nat. Methods 13, 925–927 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Henager, S. H., Henriquez, S., Dempsey, D. R. & Cole, P. A. Analysis of site-specific phosphorylation of PTEN by using enzyme-catalyzed expressed protein ligation. ChemBioChem 21, 64–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Toplak, A., Nuijens, T., Quaedflieg, P. J. L. M., Wu, B. & Janssen, D. B. Peptiligase, an enzyme for efficient chemoenzymatic peptide synthesis and cyclization in water. Adv. Synth. Catal. 358, 2140–2147 (2016).

    Article  CAS  Google Scholar 

  67. Toplak, A. et al. From thiol-subtilisin to omniligase: design and structure of a broadly applicable peptide ligase. Comput. Struct. Biotechnol. J. 19, 1277–1287 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schmidt, M. & Nuijens, T. in Enzyme-Mediated Ligation Methods (eds Nuijens, T. & Schmidt, M.) 43–61 (Springer, 2019).

  69. Schmidt, M. et al. Omniligase-1: a powerful tool for peptide head-to-tail cyclization. Adv. Synth. Catal. 359, 2050–2055 (2017).

    Article  CAS  Google Scholar 

  70. Simpson, R. J. Fragmentation of protein using trypsin. Cold Spring Harb. Protoc. 2006, pdb.prot4550 (2006).

    Article  Google Scholar 

  71. Huber, R. & Bode, W. Structural basis of the activation and action of trypsin. Acc. Chem. Res. 11, 114–122 (1978).

    Article  CAS  Google Scholar 

  72. Liebscher, S., Mathea, S., Aumüller, T., Pech, A. & Bordusa, F. Trypsiligase-catalyzed labeling of proteins on living cells. ChemBioChem 22, 1201–1204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meyer, C., Liebscher, S. & Bordusa, F. Selective coupling of click anchors to proteins via trypsiligase. Bioconjug. Chem. 27, 47–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Liebscher, S. et al. N-terminal protein modification by substrate-activated reverse proteolysis. Angew. Chem. Int. Ed. 53, 3024–3028 (2014).

    Article  CAS  Google Scholar 

  75. Liebscher, S. et al. Derivatization of antibody fab fragments: a designer enzyme for native protein modification. ChemBioChem 15, 1096–1100 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Kopp, F. & Marahiel, M. A. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat. Prod. Rep. 24, 735–749 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jonathan, R. C., Paola, E., Patrick, S. C. & Nair, K. S. Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants. Proc. Natl Acad. Sci. USA 114, 6551–6556 (2017).

    Article  Google Scholar 

  79. Ongpipattanakul, C. & Nair, S. K. Biosynthetic proteases that catalyze the macrocyclization of ribosomally synthesized linear peptides. Biochemistry 57, 3201–3209 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Sivonen, K., Leikoski, N., Fewer, D. P. & Jokela, J. Cyanobactins — ribosomal cyclic peptides produced by cyanobacteria. Appl. Microbiol. Biotechnol. 86, 1213–1225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Koehnke, J. et al. The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain. Nat. Struct. Mol. Biol. 19, 767–772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Houssen, W. E. in Enzyme-Mediated Ligation Methods (eds Nuijens, T. & Schmidt, M.) 193–210 (Springer, 2019).

  83. Agarwal, V., Pierce, E., McIntosh, J., Schmidt, E. W. & Nair, S. K. Structures of cyanobactin maturation enzymes define a family of transamidating proteases. Chem. Biol. 19, 1411–1422 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Czekster, C. M., Ludewig, H., McMahon, S. A. & Naismith, J. H. Characterization of a dual function macrocyclase enables design and use of efficient macrocyclization substrates. Nat. Commun. 8, 1045 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sarkar, S., Gu, W. & Schmidt, E. W. Expanding the chemical space of synthetic cyclic peptides using a promiscuous macrocyclase from prenylagaramide biosynthesis. ACS Catal. 10, 7146–7153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oueis, E., Stevenson, H., Jaspars, M., Westwood, N. J. & Naismith, J. H. Bypassing the proline/thiazoline requirement of the macrocyclase PatG. Chem. Commun. 53, 12274–12277 (2017).

    Article  CAS  Google Scholar 

  87. Qingfei, Z. et al. An α/β-hydrolase fold protein in the biosynthesis of thiostrepton exhibits a dual activity for endopeptidyl hydrolysis and epoxide ring opening/macrocyclization. Proc. Natl Acad. Sci. USA 113, 14318–14323 (2016).

    Article  Google Scholar 

  88. Savoca, M. P., Tonoli, E., Atobatele, A. G. & Verderio, E. A. M. Biocatalysis by transglutaminases: a review of biotechnological applications. Micromachines 9, 562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Griffin, M., Casadio, R. & Bergamini, C. M. Transglutaminases: nature’s biological glues. Biochem. J. 368, 377–396 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Farrelly, L. A. et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567, 535–539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rachel, N. M. & Pelletier, J. N. Biotechnological applications of transglutaminases. Biomolecules 3, 870–888 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Dickgiesser, S., Deweid, L., Kellner, R., Kolmar, H. & Rasche, N. in Enzyme-Mediated Ligation Methods (eds Nuijens, T. & Schmidt, M.) 135–149 (Springer, 2019).

  93. Bijan, Z. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    Google Scholar 

  94. Gianluca, V. et al. Programmable polyproteams built using twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).

    Article  Google Scholar 

  95. Veggiani, G., Zakeri, B. & Howarth, M. Superglue from bacteria: unbreakable bridges for protein nanotechnology. Trends Biotechnol. 32, 506–512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kang, H. J., Coulibaly, F., Clow, F., Proft, T. & Baker, E. N. Stabilizing isopeptide bonds revealed in Gram-positive bacterial pilus structure. Science 318, 1625–1628 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Kang, H. J. & Baker, E. N. Intramolecular isopeptide bonds: protein crosslinks built for stress? Trends Biochem. Sci. 36, 229–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Lukasak, B. J. et al. A genetically encoded approach for breaking chromatin symmetry. ACS Cent. Sci. 8, 176–183 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, H. H., Altun, B., Nwe, K. & Tsourkas, A. Proximity-based sortase-mediated ligation. Angew. Chem. Int. Ed. 56, 5349–5352 (2017).

    Article  CAS  Google Scholar 

  100. Brune, K. D. et al. Dual plug-and-display synthetic assembly using orthogonal reactive proteins for twin antigen immunization. Bioconjug. Chem. 28, 1544–1551 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Tan, L. L., Hoon, S. S. & Wong, F. T. Kinetic controlled Tag–Catcher interactions for directed covalent protein assembly. PLoS ONE 11, e0165074 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wu, X.-L., Liu, Y., Liu, D., Sun, F. & Zhang, W.-B. An intrinsically disordered peptide–peptide stapler for highly efficient protein ligation both in vivo and in vitro. J. Am. Chem. Soc. 140, 17474–17483 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Keeble, A. H. et al. Evolving accelerated amidation by SpyTag/SpyCatcher to analyze membrane dynamics. Angew. Chem. Int. Ed. 56, 16521–16525 (2017).

    Article  CAS  Google Scholar 

  104. Si, M., Xu, Q., Jiang, L. & Huang, H. SpyTag/SpyCatcher cyclization enhances the thermostability of firefly luciferase. PLoS ONE 11, e0162318 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zhang, W.-B., Sun, F., Tirrell, D. A. & Arnold, F. H. Controlling macromolecular topology with genetically encoded SpyTag–SpyCatcher chemistry. J. Am. Chem. Soc. 135, 13988–13997 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Bedford, L., Lowe, J., Dick, L. R., Mayer, R. J. & Brownell, J. E. Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets. Nat. Rev. Drug Discov. 10, 29–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Scheffner, M., Nuber, U. & Huibregtse, J. M. Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Li, W. & Ye, Y. Polyubiquitin chains: functions, structures, and mechanisms. Cell. Mol. Life Sci. 65, 2397–2406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cappadocia, L. & Lima, C. D. Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem. Rev. 118, 889–918 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Zhao, B. et al. Protein engineering in the ubiquitin system: tools for discovery and beyond. Pharmacol. Rev. 72, 380–413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fottner, M. & Lang, K. Decorating proteins with LACE. Nat. Chem. 12, 980–982 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Hofmann, R., Akimoto, G., Wucherpfennig, T. G., Zeymer, C. & Bode, J. W. Lysine acylation using conjugating enzymes for site-specific modification and ubiquitination of recombinant proteins. Nat. Chem. 12, 1008–1015 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Akimoto, G., Fernandes, A. P. & Bode, J. W. Site-specific protein ubiquitylation using an engineered, chimeric E1 activating enzyme and E2 SUMO conjugating enzyme Ubc9. ACS Cent. Sci. 8, 275–281 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Green, C. M., Novikova, O. & Belfort, M. The dynamic intein landscape of eukaryotes. Mob. DNA 9, 4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Novikova, O. et al. Intein clustering suggests functional importance in different domains of life. Mol. Biol. Evol. 33, 783–799 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Paulus, H. Inteins as enzymes. Bioorg. Chem. 29, 119–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Shah, N. H. & Muir, T. W. Inteins: nature’s gift to protein chemists. Chem. Sci. 5, 446–461 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Novikova, O., Topilina, N. & Belfort, M. Enigmatic distribution, evolution, and function of inteins. J. Biol. Chem. 289, 14490–14497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Eryilma, E., Shah, N. H., Muir, T. W. & Cowburn, D. Structural and dynamical features of inteins and implications on protein splicing. J. Biol. Chem. 289, 14506–14511 (2014).

    Article  Google Scholar 

  120. Mills, K. V., Dorval, D. M. & Lewandowski, K. T. Kinetic analysis of the individual steps of protein splicing for the Pyrococcus abyssi PolII intein. J. Biol. Chem. 280, 2714–2720 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Callahan, B. P., Topilina, N. I., Stanger, M. J., Van Roey, P. & Belfort, M. Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications. Nat. Struct. Mol. Biol. 18, 630–633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dearden, A. K. et al. A conserved threonine spring-loads precursor for intein splicing. Protein Sci. 22, 557–563 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Romanelli, A., Shekhtman, A., Cowburn, D. & Muir, T. W. Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein–intein junction. Proc. Natl Acad. Sci. USA 101, 6397–6402 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Du, Z., Zheng, Y., Patterson, M., Liu, Y. & Wang, C. pKa coupling at the intein active site: implications for the coordination mechanism of protein splicing with a conserved aspartate. J. Am. Chem. Soc. 133, 10275–10282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu, M. Q. et al. Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J. 13, 5517–5522 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Frutos, S., Goger, M., Giovani, B., Cowburn, D. & Muir, T. W. Branched intermediate formation stimulates peptide bond cleavage in protein splicing. Nat. Chem. Biol. 6, 527–533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shah, N. H., Eryilmaz, E., Cowburn, D. & Muir, T. W. Extein residues play an intimate role in the rate-limiting step of protein trans-splicing. J. Am. Chem. Soc. 135, 5839–5847 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, Z. et al. Structure of the branched intermediate in protein splicing. Proc. Natl Acad. Sci. USA 111, 8422–8427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wu, Q. et al. Conserved residues that modulate protein trans-splicing of Npu DnaE split intein. Biochem. J. 461, 247–255 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Chong, S. et al. Protein splicing involving the Saccharomyces cerevisiae VMA intein. J. Biol. Chem. 271, 22159–22168 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Mills, K. V., Johnson, M. A. & Perler, F. B. Protein splicing: how inteins escape from precursor proteins. J. Biol. Chem. 289, 14498–14505 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shah, N. H., Eryilmaz, E., Cowburn, D. & Muir, T. W. Naturally split inteins assemble through a ‘capture and collapse’ mechanism. J. Am. Chem. Soc. 135, 18673–18681 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zheng, Y., Wu, Q., Wang, C., Xu, M. Q. & Liu, Y. Mutual synergistic protein folding in split intein. Biosci. Rep. 32, 433–442 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Stevens, A. J., Sekar, G., Gramespacher, J. A., Cowburn, D. & Muir, T. W. An atypical mechanism of split intein molecular recognition and folding. J. Am. Chem. Soc. 140, 11791–11799 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shah, N. H., Vila-Perelló, M. & Muir, T. W. Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew. Chem. Int. Ed. 50, 6511–6515 (2011).

    Article  CAS  Google Scholar 

  136. Bhagawati, M. et al. A mesophilic cysteine-less split intein for protein trans-splicing applications under oxidizing conditions. Proc. Natl Acad. Sci. USA 116, 22164–22172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Martin, D. D., Xu, M. Q. & Evans, T. C. Characterization of a naturally occurring trans-splicing intein from Synechocystis sp. PCC6803. Biochemistry 40, 1393–1402 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Shah, N. H., Dann, G. P., Vila-Perelló, M., Liu, Z. & Muir, T. W. Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J. Am. Chem. Soc. 134, 11338–11341 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zettler, J., Schütz, V. & Mootz, H. D. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. 583, 909–914 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Stevens, A. J. et al. Design of a split intein with exceptional protein splicing activity. J. Am. Chem. Soc. 138, 2162–2165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Carvajal-Vallejos, P., Pallissé, R., Mootz, H. D. & Schmidt, S. R. Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. J. Biol. Chem. 287, 28686–28696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Thiel, I. V., Volkmann, G., Pietrokovski, S. & Mootz, H. D. An atypical naturally split intein engineered for highly efficient protein labeling. Angew. Chem. Int. Ed. 53, 1306–1310 (2014).

    Article  CAS  Google Scholar 

  143. Amitai, G., Callahan, B. P., Stanger, M. J., Belfort, G. & Belfort, M. Modulation of intein activity by its neighboring extein substrates. Proc. Natl Acad. Sci. USA 106, 11005–11010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lockless, S. W. & Muir, T. W. Traceless protein splicing utilizing evolved split inteins. Proc. Natl Acad. Sci. USA 106, 10999–11004 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Appleby-Tagoe, J. H. et al. Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J. Biol. Chem. 286, 34440–34447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Oeemig, J. S., Zhou, D., Kajander, T., Wlodawer, A. & Iwaï, H. NMR and crystal structures of the Pyrococcus horikoshii RadA intein guide a strategy for engineering a highly efficient and promiscuous intein. J. Mol. Biol. 421, 85–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cheriyan, M., Pedamallu, C. S., Tori, K. & Perler, F. Faster protein splicing with the nostoc punctiforme DnaE intein using non-native extein residues. J. Biol. Chem. 288, 6202–6211 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shi, J. & Muir, T. W. Development of a tandem protein trans-splicing system based on native and engineered split inteins. J. Am. Chem. Soc. 127, 6198–6206 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Iwai, H., Züger, S., Jin, J. & Tam, P. H. Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. 580, 1853–1858 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Stevens, A. J. et al. A promiscuous split intein with expanded protein engineering applications. Proc. Natl Acad. Sci. USA 114, 8538–8543 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Züger, S. & Iwai, H. Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat. Biotechnol. 23, 736–740 (2005).

    Article  PubMed  Google Scholar 

  152. Bachmann, A. L. & Mootz, H. D. An unprecedented combination of serine and cysteine nucleophiles in a split intein with an atypical split site. J. Biol. Chem. 290, 28792–28804 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Neugebauer, M., Böcker, J. K., Matern, J. C. J., Pietrokovski, S. & Mootz, H. D. Development of a screening system for inteins active in protein splicing based on intein insertion into the LacZα-peptide. Biol. Chem. 398, 57–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Sun, W., Yang, J. & Liu, X. Q. Synthetic two-piece and three-piece split inteins for protein trans-splicing. J. Biol. Chem. 279, 35281–35286 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Lin, Y. et al. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins. PLoS ONE 8, e59516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ludwig, C., Pfeiff, M., Linne, U. & Mootz, H. D. Ligation of a synthetic peptide to the N terminus of a recombinant protein using semisynthetic protein trans-splicing. Angew. Chem. Int. Ed. 45, 5218–5221 (2006).

    Article  CAS  Google Scholar 

  157. Braner, M., Kollmannsperger, A., Wieneke, R. & Tampé, R. ‘Traceless’ tracing of proteins — high-affinity trans-splicing directed by a minimal interaction pair. Chem. Sci. 7, 2646–2652 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Appleby, J. H., Zhou, K., Volkmann, G. & Liu, X. Q. Novel split intein for trans-splicing synthetic peptide onto C terminus of protein. J. Biol. Chem. 284, 6194–6199 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Thompson, R. E., Stevens, A. J. & Muir, T. W. Protein engineering through tandem transamidation. Nat. Chem. 11, 737–743 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mootz, H. D. & Muir, T. W. Protein splicing triggered by a small molecule. J. Am. Chem. Soc. 124, 9044–9045 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Mootz, H. D., Blum, E. S. & Muir, T. W. Activation of an autoregulated protein kinase by conditional protein splicing. Angew. Chem. Int. Ed. 43, 5189–5192 (2004).

    Article  CAS  Google Scholar 

  162. Sonntag, T. & Mootz, H. D. An intein-cassette integration approach used for the generation of a split TEV protease activated by conditional protein splicing. Mol. Biosyst. 7, 2031–2039 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Mootz, H. D., Blum, E. S., Tyszkiewicz, A. B. & Muir, T. W. Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J. Am. Chem. Soc. 125, 10561–10569 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Alford, S. C., O’Sullivan, C., Obst, J., Christie, J. & Howard, P. L. Conditional protein splicing of α-sarcin in live cells. Mol. Biosyst. 10, 831–837 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Schwartz, E. C., Saez, L., Young, M. W. & Muir, T. W. Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat. Chem. Biol. 3, 50–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Brenzel, S. & Mootz, H. D. Design of an intein that can be inhibited with a small molecule ligand. J. Am. Chem. Soc. 127, 4176–4177 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Buskirk, A. R., Ong, Y. C., Gartner, Z. J. & Liu, D. R. Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc. Natl Acad. Sci. USA 101, 10505–10510 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hartley, P. D. & Madhani, H. D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445–458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yuen, C. M., Rodda, S. J., Vokes, S. A., McMahon, A. P. & Liu, D. R. Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J. Am. Chem. Soc. 128, 8939–8946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Peck, S. H., Chen, I. & Liu, D. R. Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem. Biol. 18, 619–630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Davis, K. M., Pattanayak, V., Thompson, D. B., Zuris, J. A. & Liu, D. R. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11, 316–318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Skretas, G. & Wood, D. W. Regulation of protein activity with small-molecule-controlled inteins. Protein Expr. Purif. 14, 523–532 (2005).

    CAS  Google Scholar 

  173. Cook, S. N. et al. Photochemically lnitiated protein splicing. Angew. Chem. Int. Ed. Engl. 34, 1629–1630 (1995).

    Article  CAS  Google Scholar 

  174. Ren, W., Ji, A. & Ai, H. W. Light activation of protein splicing with a photocaged fast intein. J. Am. Chem. Soc. 137, 2155–2158 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Böcker, J. K., Dörner, W. & Mootz, H. D. Light-control of the ultra-fast Gp41-1 split intein with preserved stability of a genetically encoded photo-caged amino acid in bacterial cells. Chem. Commun. 55, 1287–1290 (2019).

    Article  Google Scholar 

  176. Böcker, J. K., Friedel, K., Matern, J. C. J., Bachmann, A. L. & Mootz, H. D. Generation of a genetically encoded, photoactivatable intein for the controlled production of cyclic peptides. Angew. Chem. Int. Ed. 54, 2116–2120 (2015).

    Article  Google Scholar 

  177. Berrade, L., Kwon, Y. & Camarero, J. A. Photomodulation of protein trans-splicing through backbone photocaging of the DnaE split intein. ChemBioChem 11, 1368–1372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Vila-Perelló, M., Hori, Y., Ribó, M. & Muir, T. W. Activation of protein splicing by protease- or light-triggered O to N acyl migration. Angew. Chem. Int. Ed. 47, 7764–7767 (2008).

    Article  Google Scholar 

  179. Jung, D. et al. Photo-triggered fluorescent labelling of recombinant proteins in live cells. Chem. Commun. 51, 9670–9673 (2015).

    Article  CAS  Google Scholar 

  180. Gramespacher, J. A., Stevens, A. J., Nguyen, D. P., Chin, J. W. & Muir, T. W. Intein zymogens: conditional assembly and splicing of split inteins via targeted proteolysis. J. Am. Chem. Soc. 139, 8074–8077 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gramespacher, J. A., Burton, A. J., Guerra, L. F. & Muir, T. W. Proximity induced splicing utilizing caged split inteins. J. Am. Chem. Soc. 141, 13708–13712 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wong, S., Mosabbir, A. A. & Truong, K. An engineered split intein for photoactivated protein trans-splicing. PLoS ONE 10, e0135965 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Jones, D. C., Mistry, I. N. & Tavassoli, A. Post-translational control of protein function with light using a LOV-intein fusion protein. Mol. Biosyst. 12, 1388–1393 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Tyszkiewicz, A. B. & Muir, T. W. Activation of protein splicing with light in yeast. Nat. Methods 5, 303–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Truong, D. J. J. et al. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 43, 6450–6458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Scott, C. P., Abel-Santos, E., Wall, M., Wahnon, D. C. & Benkovic, S. J. Production of cyclic peptides and proteins in vivo. Proc. Natl Acad. Sci. USA 96, 13638–13643 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tavassoli, A. & Benkovic, S. J. Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Nat. Protoc. 2, 1126–1133 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Giriat, I. & Muir, T. W. Protein semi-synthesis in living cells. J. Am. Chem. Soc. 125, 7180–7181 (2003).

    Article  CAS  PubMed  Google Scholar 

  189. Volkmann, G. & Liu, X. Q. Protein C-terminal labeling and biotinylation using synthetic peptide and split-intein. PLoS ONE 4, e8381 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Borra, R., Dong, D., Elnagar, A. Y., Woldemariam, G. A. & Camarero, J. A. In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J. Am. Chem. Soc. 134, 6344–6353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bhagawati, M. et al. In cellulo protein semi-synthesis from endogenous and exogenous fragments using the ultra-fast split Gp41-1 intein. Angew. Chem. Int. Ed. 59, 21007–21015 (2020).

    Article  CAS  Google Scholar 

  192. Charalambous, A., Antoniades, I., Christodoulou, N. & Skourides, P. A. Split-inteins for simultaneous, site-specific conjugation of quantum dots to multiple protein targets in vivo. J. Nanobiotechnol. 9, 1–14 (2011).

    Article  Google Scholar 

  193. Ray, D. M., Flood, J. R. & David, Y. Harnessing split‐inteins as a tool for the selective modification of surface receptors in live cells. ChemBioChem 24, e202200487 (2023).

    CAS  PubMed  Google Scholar 

  194. Otomo, T., Ito, N., Kyogoku, Y. & Yamazaki, T. NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 38, 16040–16044 (1999).

    Article  CAS  PubMed  Google Scholar 

  195. Busche, A. E. L. et al. Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. Angew. Chem. Int. Ed. 48, 6128–6131 (2009).

    Article  CAS  Google Scholar 

  196. Khoo, K. K. et al. Chemical modification of proteins by insertion of synthetic peptides using tandem protein trans-splicing. Nat. Commun. 11, 2284 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Pinto, F., Thornton, E. L. & Wang, B. An expanded library of orthogonal split inteins enables modular multi-peptide assemblies. Nat. Commun. 11, 1529 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  199. David, Y., Vila-Perelló, M., Verma, S. & Muir, T. W. Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nat. Chem. 7, 394–402 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Holt, M. T. et al. Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proc. Natl Acad. Sci. USA 112, 10365–10370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Burton, A. J. et al. In situ chromatin interactomics using a chemical bait and trap approach. Nat. Chem. 12, 520–527 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Burton, A. J., Haugbro, M., Parisi, E. & Muir, T. W. Live-cell protein engineering with an ultra-short split intein. Proc. Natl Acad. Sci. USA 117, 12041–12049 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Liszczak, G. P. et al. Genomic targeting of epigenetic probes using a chemically tailored Cas9 system. Proc. Natl Acad. Sci. USA 114, 681–686 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Morshedi Rad, D. et al. A comprehensive review on intracellular delivery. Adv. Mater. 33, 2005363 (2021).

    Article  CAS  Google Scholar 

  205. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Fottner, M. et al. Site-specific protein labeling and generation of defined ubiquitin–protein conjugates using an asparaginyl endopeptidase. J. Am. Chem. Soc. 144, 13118–13126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  208. Chong, S. et al. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192, 271–281 (1997).

    Article  CAS  PubMed  Google Scholar 

  209. Muir, T. W., Sondhi, D. & Cole, P. A. Expressed protein ligation: a general method for protein engineering. Proc. Natl Acad. Sci. USA 95, 6705–6710 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kumar, K. S. A., Spasser, L., Erlich, L. A., Bavikar, S. N. & Brik, A. Total chemical synthesis of di-ubiquitin chains. Angew. Chem. Int. Ed. 49, 9126–9131 (2010).

    Article  CAS  Google Scholar 

  211. Tashiro, K., Mohapatra, J., Brautigam, C. A. & Liszczak, G. A Protein semisynthesis-based strategy to investigate the functional impact of linker histone serine ADP-ribosylation. ACS Chem. Biol. 17, 810–815 (2022).

    Article  CAS  PubMed  Google Scholar 

  212. Schwagerus, S., Reimann, O., Despres, C., Smet-Nocca, C. & Hackenberger, C. P. R. Semi-synthesis of a tag-free O-GlcNAcylated tau protein by sequential chemoselective ligation. J. Pept. Sci. 22, 327–333 (2016).

    Article  CAS  PubMed  Google Scholar 

  213. Kulkarni, S. S., Sayers, J., Premdjee, B. & Payne, R. J. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat. Rev. Chem. 2, 0122 (2018).

    Article  CAS  Google Scholar 

  214. Chin, J. W. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83, 379–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Neumann, H., Wang, K., Davis, L., Garcia-Alai, M. & Chin, J. W. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464, 441–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  216. Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Luo for critical reading of the manuscript. Work in the David Laboratory is supported by the Josie Robertson Foundation, the Pershing Square Sohn Cancer Research Alliance, the NIH (CCSG core grant P30 CA008748, MSK SPORE P50 CA192937, R21 DA044767 and R35 GM138386), the Parker Institute for Cancer Immunotherapy and the Anna Fuller Trust. In addition, the David Laboratory is supported by the William H. Goodwin and Alice Goodwin Commonwealth Foundation for Cancer Research and by the Center for Experimental Therapeutics at MSKCC. R.P. is supported by the Novo Nordisk Foundation grant NNF20OC0061064. The Zheng laboratory is supported by OSUCCC startup funds.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Qingfei Zheng or Yael David.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Ashraf Brik, Anne Conibear and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pihl, R., Zheng, Q. & David, Y. Nature-inspired protein ligation and its applications. Nat Rev Chem 7, 234–255 (2023). https://doi.org/10.1038/s41570-023-00468-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00468-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing