Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Predicting the stability of homotrimeric and heterotrimeric collagen helices

Abstract

Robust methods for predicting thermal stabilities of collagen triple helices are critical for understanding natural structure and stability in the collagen family of proteins and also for designing synthetic peptides mimicking these essential proteins. In this work, we determine the relative stability imparted on the collagen triple helix by single amino acids and interactions between amino acid pairs. Using this analysis, we create a comprehensive algorithm, SCEPTTr, for predicting melting temperatures of synthetic triple helices. Critically, our algorithm is compatible with every natural amino acid, can evaluate both homotrimers and heterotrimers, and accounts for all possible helix compositions and registers, including non-canonically staggered helices. We test and optimize our algorithm against 431 published collagen triple helices to demonstrate the quality of our predictive system. Finally, we use this algorithm to successfully guide the design of an ABC heterotrimer possessing high assembly specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organization of the collagen triple helix.
Fig. 2: Flow chart of the logical flow of SCEPTTr to predict melting temperatures of combinations of peptides in collagen-like triple helices.
Fig. 3: Performance of SCEPTTr for the library of triple helices available in the literature.
Fig. 4: Thermal characterization of the ABC heterotrimer.
Fig. 5: Structural characterization of the ABC heterotrimer.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper, in the Supplementary Information and from the corresponding author. In particular, the NMR raw data are available on request due to the size of the files and the lack of appropriate public repositories for raw multi-dimensional NMR data.

Code availability

A compiled standalone Java application is available for download as Supplementary Software 1. The genetic algorithm used to optimize SCEPTTr requires human input to further optimize the values used. For this reason, it is available from the corresponding author upon reasonable request.

References

  1. Celerin, M. et al. Fungal fimbriae are composed of collagen. EMBO J. 15, 4445–4453 (1996).

    Article  CAS  Google Scholar 

  2. Rasmussen, M., Jacobsson, M. & Björck, L. Genome-based identification and analysis of collagen-related structural motifs in bacterial and viral proteins. J. Biol. Chem. 278, 32313–32316 (2003).

    Article  CAS  Google Scholar 

  3. Thiel, S. Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. Mol. Immunol. 44, 3875–3888 (2007).

    Article  CAS  Google Scholar 

  4. Yu, Z., An, B., Ramshaw, J. A. M. & Brodsky, B. Bacterial collagen-like proteins that form triple-helical structures. J. Struct. Biol. 186, 451–461 (2014).

    Article  CAS  Google Scholar 

  5. O’Shea, E. K., Klemm, J. D., Kim, P. S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 539–544 (1991).

    Article  Google Scholar 

  6. Landschulz, W. H., Johnson, P. F. & McKnight, S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764 (1988).

    Article  CAS  Google Scholar 

  7. O’Shea, E. K., Rutkowski, R., Stafford, W. F. III & Kim, P. S. Preferential heterodimer formation by isolated leucine zippers from fos and jun. Science 245, 646–648 (1989).

    Article  Google Scholar 

  8. Lovejoy, B. et al. Crystal structure of a synthetic triple-stranded α-helical bundle. Science 259, 1288–1293 (1993).

    Article  CAS  Google Scholar 

  9. Zimenkov, Y., Conticello, V. P., Guo, L. & Thiyagarajan, P. Rational design of a nanoscale helical scaffold derived from self-assembly of a dimeric coiled coil motif. Tetrahedron 60, 7237–7246 (2004).

    Article  CAS  Google Scholar 

  10. Zimenkov, Y. et al. Rational design of a reversible pH-responsive switch for peptide self-assembly. J. Am. Chem. Soc. 128, 6770–6771 (2006).

    Article  CAS  Google Scholar 

  11. Moutevelis, E. & Woolfson, D. N. A periodic table of coiled-coil protein structures. J. Mol. Biol. 385, 726–732 (2009).

    Article  CAS  Google Scholar 

  12. Fallas, J. A. et al. Computational design of self-assembling cyclic protein homo-oligomers. Nat. Chem. 9, 353–360 (2017).

    Article  CAS  Google Scholar 

  13. Rhys, G. G. et al. Maintaining and breaking symmetry in homomeric coiled-coil assemblies. Nat. Commun. 9, 4132 (2018).

    Article  Google Scholar 

  14. Koepnick, B. et al. De novo protein design by citizen scientists. Nature 570, 390–394 (2019).

    Article  CAS  Google Scholar 

  15. Persikov, A. V., Ramshaw, J. A. M. & Brodsky, B. Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 280, 19343–19349 (2005).

    Article  CAS  Google Scholar 

  16. Holmgren, S. K., Bretscher, L. E., Taylor, K. M. & Raines, R. T. A hyperstable collagen mimic. Chem. Biol. 6, 63–70 (1999).

    Article  CAS  Google Scholar 

  17. Gauba, V. & Hartgerink, J. D. Self-Assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc. 129, 2683–2690 (2007).

    Article  CAS  Google Scholar 

  18. Jalan, A. A., Jochim, K. A. & Hartgerink, J. D. Rational design of a non-canonical “sticky-ended” collagen triple helix. J. Am. Chem. Soc. 136, 7535–7538 (2014).

    Article  CAS  Google Scholar 

  19. Persikov, A. V., Ramshaw, J. A. M., Kirkpatrick, A. & Brodsky, B. Peptide investigations of pairwise interactions in the collagen triple-helix. J. Mol. Biol. 316, 385–394 (2002).

    Article  CAS  Google Scholar 

  20. Persikov, A. V., Ramshaw, J. A. M., Kirkpatrick, A. & Brodsky, B. Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability. Biochemistry 44, 1414–1422 (2005).

    Article  CAS  Google Scholar 

  21. Fallas, J. A., Dong, J., Tao, Y. J. & Hartgerink, J. D. Structural insights into charge pair interactions in triple helical collagen-like proteins. J. Biol. Chem. 287, 8039–8047 (2012).

    Article  CAS  Google Scholar 

  22. Wei, F., Fallas, J. A. & Hartgerink, J. D. Sequence position and side chain length dependence of charge pair interactions in collagen triple helices. Macromol. Rapid Commun. 33, 1445–1452 (2012).

    Article  CAS  Google Scholar 

  23. Xu, F., Zhang, L., Koder, R. L. & Nanda, V. De novo self-assembling collagen heterotrimers using explicit positive and negative design. Biochemistry 49, 2307–2316 (2010).

    Article  CAS  Google Scholar 

  24. Chen, C.-C. et al. Contributions of cation–π interactions to the collagen triple helix stability. Arch. Biochem. Biophys. 508, 46–53 (2011).

    Article  CAS  Google Scholar 

  25. Xu, F., Zahid, S., Silva, T. & Nanda, V. Computational design of a collagen A:B:C-type heterotrimer. J. Am. Chem. Soc. 133, 15260–15263 (2011).

    Article  CAS  Google Scholar 

  26. Parmar, A. S., Joshi, M., Nosker, P. L., Hasan, N. F. & Nanda, V. Control of collagen stability and heterotrimer specificity through repulsive electrostatic interactions. Biomolecules 3, 986–996 (2013).

    Article  CAS  Google Scholar 

  27. Acevedo-Jake, A. M., Ngo, D. H. & Hartgerink, J. D. Control of collagen triple helix stability by phosphorylation. Biomacromolecules 18, 1157–1161 (2017).

    Article  CAS  Google Scholar 

  28. Zheng, H., Liu, H., Hu, J. & Xu, F. Using a collagen heterotrimer to screen for cation-π interactions to stabilize triple helices. Chem. Phys. Lett. 715, 77–83 (2019).

    Article  CAS  Google Scholar 

  29. Gauba, V. & Hartgerink, J. D. Surprisingly high stability of collagen ABC heterotrimer: evaluation of side chain charge pairs. J. Am. Chem. Soc. 129, 15034–15041 (2007).

    Article  CAS  Google Scholar 

  30. Zheng, H. et al. How electrostatic networks modulate specificity and stability of collagen. Proc. Natl Acad. Sci. USA 115, 6207–6212 (2018).

    Article  CAS  Google Scholar 

  31. Fallas, J. A. & Hartgerink, J. D. Computational design of self-assembling register-specific collagen heterotrimers. Nat. Commun. 3, 1087 (2012).

    Article  Google Scholar 

  32. Acevedo-Jake, A. M., Clements, K. A. & Hartgerink, J. D. Synthetic, register-specific, AAB heterotrimers to investigate single point glycine mutations in Osteogenesis imperfecta. Biomacromolecules 17, 914–921 (2016).

    Article  CAS  Google Scholar 

  33. Clements, K. A., Acevedo-Jake, A. M., Walker, D. R. & Hartgerink, J. D. Glycine substitutions in collagen heterotrimers alter triple helical assembly. Biomacromolecules 18, 617–624 (2017).

    Article  CAS  Google Scholar 

  34. Giddu, S., Xu, F. & Nanda, V. Sequence recombination improves target specificity in a redesigned collagen peptide abc-type heterotrimer. Proteins 81, 386–393 (2013).

    Article  CAS  Google Scholar 

  35. Parmar, A. S. et al. Design of net-charged abc-type collagen heterotrimers. J. Struct. Biol. 185, 163–167 (2014).

    Article  CAS  Google Scholar 

  36. Egli, J., Erdmann, R. S., Schmidt, P. J. & Wennemers, H. Effect of N- and C-terminal functional groups on the stability of collagen triple helices. Chem. Commun. 53, 11036–11039 (2017).

    Article  CAS  Google Scholar 

  37. Keshwani, N., Banerjee, S., Brodsky, B. & Makhatadze, G. I. The role of cross-chain ionic interactions for the stability of collagen model peptides. Biophys. J. 105, 1681–1688 (2013).

    Article  CAS  Google Scholar 

  38. Acevedo-Jake, A. M., Jalan, A. A. & Hartgerink, J. D. Comparative NMR analysis of collagen triple helix organization from N- to C-termini. Biomacromolecules 16, 145–155 (2015).

    Article  CAS  Google Scholar 

  39. O’Leary, L. R. Multi-Hierarchical Self-Assembly of collagen mimetic peptides into AAB type heterotrimers, nanofibers and hydrogels driven by charged pair interactions. PhD thesis, Rice University (2011).

  40. Deprez, P., Doss-Pepe, E., Brodsky, B. & Inestrosa, N. C. Interaction of the collagen-like tail of asymmetric acetylcholinesterase with heparin depends on triple-helical conformation, sequence and stability. Biochem. J. 350, 283–290 (2000).

    Article  CAS  Google Scholar 

  41. Shah, N. K., Sharma, M., Kirkpatrick, A., Ramshaw, J. A. M. & Brodsky, B. Gly-Gly-containing triplets of low stability adjacent to a type III collagen epitope. Biochemistry 36, 5878–5883 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Science Foundation (CHE 1709631) and the Robert A. Welch Foundation (C1557). I.-C.L. was supported by the Stauffer-Rothrock Fellowship. We thank the NMR and Drug Metabolism Core at Baylor College of Medicine for access to the 800 MHz NMR spectrometer and K. R. MacKenzie for assistance in acquiring NMR spectra.

Author information

Authors and Affiliations

Authors

Contributions

D.R.W., S.A.H.H., I.-C.L. and K.J.G. designed, synthesized and characterized deconvolution peptides. D.R.W. assembled the peptide library, designed, wrote and optimized SCEPTTr, performed and analysed NMR experiments, and co-wrote the manuscript. C.M.P. designed and synthesized the novel ABC system and characterized it using circular dichroism spectroscopy. J.D.H. supervised the research, evaluated all of the data and co-wrote the manuscript.

Corresponding author

Correspondence to Jeffrey D. Hartgerink.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to J.D.H.

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–76, Discussion and Tables 1–7.

Supplementary Video 1

Movie to show NMR correlations.

Supplementary Software 1

Java application for SCEPTTr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, D.R., Hulgan, S.A.H., Peterson, C.M. et al. Predicting the stability of homotrimeric and heterotrimeric collagen helices. Nat. Chem. 13, 260–269 (2021). https://doi.org/10.1038/s41557-020-00626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00626-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing