Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides


The development of efficient methods, particularly catalytic and enantioselective processes, for the construction of all-carbon quaternary stereocentres is an important (and difficult) challenge in organic synthesis due to the occurrence of this motif in a range of bioactive molecules. One conceptually straightforward and potentially versatile approach is the catalytic enantioconvergent substitution reaction of a readily available racemic tertiary alkyl electrophile by an organometallic nucleophile; however, examples of such processes are rare. Here we demonstrate that a nickel-based chiral catalyst achieves enantioconvergent couplings of a variety of tertiary electrophiles (cyclic and acyclic α-halocarbonyl compounds) with alkenylmetal nucleophiles to form quaternary stereocentres with good yield and enantioselectivity under mild conditions in the presence of a range of functional groups. These couplings, which probably proceed via a radical pathway, provide access to an array of useful families of organic compounds, including intermediates in the total synthesis of two natural products, (–)-eburnamonine and madindoline A.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic asymmetric synthesis of quaternary stereocentres via stereoconvergent nucleophilic substitution reactions of racemic tertiary alkyl electrophiles.
Fig. 2: Mechanistic studies.
Fig. 3: Applications of the coupling products.

Data availability

The data that support the findings of this study are available in the Supplementary Information (experimental procedures and characterization data). Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1958912 (13), 1958913 (81), and 1965146 (80). Copies of the data can be obtained free of charge via


  1. Christoffers, J. & Baro, A. Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis (Wiley–VCH, 2005).

  2. Das, J. P. & Marek, I. Enantioselective synthesis of all-carbon quaternary stereogenic centers in acyclic systems. Chem. Commun. 47, 4593–4623 (2011).

    Article  CAS  Google Scholar 

  3. Li, C., Ragab, S. S., Liu, G. & Tang, W. Enantioselective formation of quaternary carbon stereocenters in natural product synthesis: a recent update. Nat. Prod. Rep. 37, 276–292 (2020).

    Article  Google Scholar 

  4. Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).

    Article  CAS  Google Scholar 

  5. Feng, J., Holmes, M. & Krische, M. J. Acyclic quaternary carbon stereocenters via enantioselective transition metal catalysis. Chem. Rev. 117, 12564–12580 (2017).

    Article  CAS  Google Scholar 

  6. Braun, M. & Kotter, W. Titanium(iv)-catalyzed dynamic kinetic asymmetric transformation of alcohols, silyl ethers, and acetals under carbon allylation. Angew. Chem. Int. Ed. 43, 514–517 (2004).

    Article  CAS  Google Scholar 

  7. Guo, C. et al. Core-structure-oriented asymmetric organocatalytic substitution of 3-hydroxyoxindoles: application in the enantioselective total synthesis of (+)-folicanthine. Angew. Chem. Int. Ed. 51, 1046–1050 (2012).

    Article  CAS  Google Scholar 

  8. Zhao, W., Wang, Z., Chu, B. & Sun, J. Enantioselective formation of all-carbon quaternary stereocenters from indoles and tertiary alcohols bearing a directing group. Angew. Chem. Int. Ed. 54, 1910–1913 (2015).

    Article  CAS  Google Scholar 

  9. Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature 556, 447–451 (2018).

    Article  CAS  Google Scholar 

  10. Trost, B. M. & Jiang, C. Atom economic asymmetric creation of quaternary carbon: regio- and enantioselective reactions of a vinylepoxide with a carbon nucleophile. J. Am. Chem. Soc. 123, 12907–12908 (2001).

    Article  CAS  Google Scholar 

  11. Hou, X.-L. & Sun, N. Construction of chiral quaternary carbon centers by Pd-catalyzed asymmetric allylic substitution with P,N-1,1′-ferrocene ligands. Org. Lett. 6, 4399–4401 (2004).

    Article  CAS  Google Scholar 

  12. Zhang, P., Le, H., Kyne, R. E. & Morken, J. P. Enantioselective construction of all-carbon quaternary centers by branch-selective Pd-catalyzed allyl-allyl cross-coupling. J. Am. Chem. Soc. 133, 9716–9719 (2011).

    Article  CAS  Google Scholar 

  13. Khan, A., Yang, L., Xu, J., Jin, L. Y. & Zhang, Y. J. Palladium-catalyzed asymmetric decarboxylative cycloaddition of vinylethylene carbonates with Michael acceptors: construction of vicinal quaternary stereocenters. Angew. Chem. Int. Ed. 53, 11257–11260 (2014).

    Article  CAS  Google Scholar 

  14. Tsuchida, K., Senda, Y., Nakajima, K. & Nishibayashi, Y. Construction of chiral tri- and tetra-arylmethanes bearing quaternary carbon centers: copper-catalyzed enantioselective propargylation of indoles with propargylic esters. Angew. Chem. Int. Ed. 55, 9728–9732 (2016).

    Article  CAS  Google Scholar 

  15. Xu, Y.-W. & Hu, X.-P. Diastereo- and enantioselective copper-catalyzed decarboxylative ring-opening [3+2] annulation of tertiary propargylic carbamates through regioselective α-attack of γ-butenolides. Org. Lett. 21, 8091–8096 (2019).

    Article  CAS  Google Scholar 

  16. Ma, S., Han, X., Krishnan, S., Virgil, S. C. & Stoltz, B. M. Catalytic enantioselective stereoablative alkylation of 3-halooxindoles: facile access to oxindoles with C3 all-carbon quaternary stereocenters. Angew. Chem. Int. Ed. 48, 8037–8041 (2009).

    Article  CAS  Google Scholar 

  17. Zhang, H., Hong, L., Kang, H. & Wang, R. Construction of vicinal all-carbon quaternary stereocenters by catalytic asymmetric alkylation reaction of 3-bromooxindoles with 3-substituted indoles: total synthesis of (+)-perophoramidine. J. Am. Chem. Soc. 135, 14098–14101 (2013).

    Article  CAS  Google Scholar 

  18. Zheng, J. et al. Nickel-catalyzed conjugate addition of silyl ketene imines to in situ generated indol-2-ones: highly enantioselective construction of vicinal all-carbon quaternary stereocenters. Angew. Chem. Int. Ed. 56, 13107–13111 (2017).

    Article  CAS  Google Scholar 

  19. Liu, X. et al. Construction of vicinal all-carbon quaternary stereocenters enabled by a catalytic asymmetric dearomatization reaction of β-naphthols with 3-bromooxindoles. ACS Catal. 8, 10888–10894 (2018).

    Article  CAS  Google Scholar 

  20. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    Article  CAS  Google Scholar 

  21. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  Google Scholar 

  22. Iwasaki, T. & Kambe, N. Ni-catalyzed C–C couplings using alkyl electrophiles. Top. Curr. Chem. 374, 66 (2016).

    Article  Google Scholar 

  23. Kaga, A. & Chiba, S. Engaging radicals in transition metal-catalyzed cross-coupling with alkyl electrophiles: recent advances. ACS Catal. 7, 4697–4706 (2017).

    Article  CAS  Google Scholar 

  24. Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    Article  CAS  Google Scholar 

  25. Li, J. et al. Formal enantioconvergent substitution of alkyl halides via catalytic asymmetric photoredox radical coupling. Nat. Commun. 9, 2445 (2018).

    Article  Google Scholar 

  26. Murakata, M., Jono, T., Mizuno, Y. & Hoshino, O. Construction of chiral quaternary carbon centers by catalytic enantioselective radical-mediated allylation of α-iodolactones using allyltributyltin in the presence of a chiral Lewis acid. J. Am. Chem. Soc. 119, 11713–11714 (1997).

    Article  CAS  Google Scholar 

  27. Wu, L., Yang, G. & Zhang, W. Ni-catalyzed enantioconvergent coupling of epoxides with alkenylboronic acids: construction of oxindoles bearing quaternary carbons. CCS Chem 1, 623–631 (2019).

    Google Scholar 

  28. Korch, K. M., Loskot, S. A. & Stoltz, B. M. Asymmetric synthesis of quaternary stereocenters via metal enolates. In PATAI’S Chemistry of Functional Groups (ed Rappoport, Z.) (2017).

  29. Minko, Y. & Marek, I. Stereodefined acyclic trisubstituted metal enolates towards the asymmetric formation of quaternary carbon stereocentres. Chem. Commun. 50, 12597–12611 (2014).

    Article  CAS  Google Scholar 

  30. Xu, S., Kamada, H., Kim, E. H., Oda, A. & Negishi, E.-I. Pd-catalyzed cross-coupling with organometals containing Zn, Al, Zr, and so on—the Negishi coupling and its recent advances. In Metal-Catalyzed Cross-Coupling Reactions and More Vol. 1 (eds De Meijere, A. & Brase, S., Oestreich, M.) 133–278 (Wiley–VCH, 2014).

  31. Pandey, G., Mishra, A. & Khamrai, J. Generation of all-carbon quaternary stereocenters at the C-3 carbon of piperidinones and pyrrolidinones and its application in natural product total synthesis. Tetrahedron 74, 4903–4915 (2018).

    Article  CAS  Google Scholar 

  32. Lou, S. & Fu, G. C. Enantioselective alkenylation via nickel-catalyzed cross-coupling with organozirconium reagents. J. Am. Chem. Soc. 132, 5010–5011 (2010).

    Article  CAS  Google Scholar 

  33. Zhang, L. et al. Bakkenolide A inhibits leukemia by regulation of HDAC3 and PI3K/Akt-related signaling pathways. Biomedicine & Pharmacotherapy 83, 958–966 (2016).

    Article  CAS  Google Scholar 

  34. Jennings, L. D. et al. Cyclobutane carboxamide inhibitors of fungal melanin: biosynthesis and their evaluation as fungicides. Bioorg. Med. Chem. 8, 897–907 (2000).

    Article  CAS  Google Scholar 

  35. Saverino, D., Debbia, E. A., Pesce, A., Lepore, A. M. & Schito, G. C. Antibacterial profile of flurithromycin, a new macrolide. J. Antimicrob. Chemother. 30, 261–272 (1992).

    Article  CAS  Google Scholar 

  36. Yang, X., Wu, T., Phipps, R. J. & Toste, F. D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev. 115, 826–870 (2015).

    Article  CAS  Google Scholar 

  37. Bizet, V., Besset, T., Ma, J.-A. & Cahard, D. Recent progress in asymmetric fluorination and trifluoromethylation reactions. Curr. Top. Med. Chem. 14, 901–940 (2014).

    Article  CAS  Google Scholar 

  38. Fujiwara, T. & Takeuchi, Y. Application of chiral α-monofluorocarbonyl compounds to analytical and medicinal chemistry. Curr. Org. Chem. 14, 950–961 (2010).

    Article  CAS  Google Scholar 

  39. Zhu, Y. et al. Modern approaches for asymmetric construction of carbon−fluorine quaternary stereogenic centers: synthetic challenges and pharmaceutical needs. Chem. Rev. 118, 3887–3964 (2018).

    Article  CAS  Google Scholar 

  40. Schley, N. D. & Fu, G. C. Nickel-catalyzed Negishi arylations of propargylic bromides: a mechanistic investigation. J. Am. Chem. Soc. 136, 16588–16593 (2014).

    Article  CAS  Google Scholar 

  41. Yin, H. & Fu, G. C. A mechanistic investigation of enantioconvergent Kumada reactions of racemic α-bromoketones catalyzed by a nickel/bis(oxazoline) complex. J. Am. Chem. Soc. 141, 15433–15440 (2019).

    Article  CAS  Google Scholar 

  42. Node, M., Nagasawa, H. & Fuji, K. Chiral total synthesis of indole alkaloids of the Aspidosperma and Hunteria types. J. Org. Chem. 55, 517–521 (1990).

    Article  CAS  Google Scholar 

  43. Hosokawa, S. & Kobayashi, S. Total synthesis of madindoline A. J. Synth. Org. Chem Jpn. 59, 1103–1108 (2001).

    Article  CAS  Google Scholar 

Download references


This paper is dedicated to the memory of Professor Jonathan Williams (University of Bath). Support has been provided by the NIGMS (R37-GM62871) and the Dow Next Generation Educator Fund (grant to Caltech). We thank S.M. Batiste, L.M. Henling, H. Huo, F. Schneck, M.K. Takase, S.C. Virgil and W. Zhang for assistance and helpful discussions.

Author information

Authors and Affiliations



Z.W. and Z.-P.Y. performed all experiments. Z.W. and G.C.F. wrote the manuscript. All authors contributed to the analysis and the interpretation of the results.

Corresponding author

Correspondence to Gregory C. Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General information, preparation of ligands and electrophiles, catalytic enantioconvergent alkenylations, effect of reaction parameters, studies of functional group compatibility, derivatization of the coupling products, applications to the formal total synthesis of natural products, mechanistic studies, assignments of absolute configuration, references, NMR spectra and determination of stereoselectivity, Tables 1–5 and Figs. 1–3.

Supplementary Data 1

Crystallographic data for compound 13. CCDC reference 1958912.

Supplementary Data 2

Crystallographic data for compound 80. CCDC reference 1965146.

Supplementary Data 3

Crystallographic data for compound 81. CCDC reference 1958913.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, ZP. & Fu, G.C. Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides. Nat. Chem. 13, 236–242 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing