Covalent on-surface polymerization

Abstract

With the rapid development of scanning probe microscopy, it has become possible to study polymerization processes on suitable surfaces at the atomic level and in real space. In the two-dimensional confinement of a surface, polymerization reactions can give rise to the formation of unprecedented polymers with unique structures and properties, not accessible in solution. After a little over one decade since the discovery of covalent on-surface polymerization, we give an overview of the field, analyse the crucial aspects and critically reflect on the status quo. Specifically, we provide some general considerations about fundamental mechanisms as well as kinetics and thermodynamics of on-surface polymerization processes. The important role of the surface is detailed in view of its ability to control polymer formation with regard to structure, dimensionality and composition. Furthermore, examples that allow for locally induced polymerization are highlighted. Finally, we provide an analysis of scientific challenges in the field and outline future prospects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Key aspects of on-surface polymerization.
Fig. 2: General mechanistic as well as thermodynamic and kinetic aspects of on-surface polymerization.
Fig. 3: Role of molecule-surface interactions.
Fig. 4: Molecular orientation and diffusion on the surface.
Fig. 5: From 1D to 2D structures.
Fig. 6: Random, alternating and block copolymer structures.
Fig. 7: Controlling local covalent bond formation and chain-growth polymerization.

References

  1. 1.

    Ziegler, K. Folgen und Werdegang einer Erfindung (Nobel lecture). Angew. Chem. 76, 545–553 (1964).

  2. 2.

    Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–180 (1982).

  3. 3.

    Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

  4. 4.

    Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R. & Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003).

  5. 5.

    Lin, N., Stepanow, S., Ruben, M. & Barth, J. V. Surface-confined supramolecular coordination chemistry. Top. Curr. Chem. 287, 1–44 (2009).

  6. 6.

    Drexler, K. E. Molecular Machinery and Manufacturing with Applications to Computation. PhD thesis, Massachusetts Institute of Technology (1991).

  7. 7.

    Hla, S.-W., Bartels, L., Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

  8. 8.

    Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

  9. 9.

    Nacci, C., Hecht, S. & Grill, L. in On-surface Synthesis (ed. Gourdon, A.) 1–21 (Springer, 2016).

  10. 10.

    Gourdon, A. On-surface covalent coupling in ultrahigh vacuum. Angew. Chem. Int. Ed. 47, 6950–6953 (2008).

  11. 11.

    Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

  12. 12.

    Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

  13. 13.

    Boz, S., Stöhr, M., Soydaner, U. & Mayor, M. Protecting-group-controlled surface chemistry — organization and heat-induced coupling of 4,4-di(tert-butoxycarbonylamino)biphenyl on metal surfaces. Angew. Chem. Int. Ed. 48, 3179–3183 (2009).

  14. 14.

    Sakamoto, J., van Heijst, J., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).

  15. 15.

    Kissel, P. et al. A two-dimensional polymer prepared by organic synthesis. Nat. Chem. 4, 287–291 (2012).

  16. 16.

    Xi, M. & Bent, B. E. Iodobenzene on Cu(111): formation and coupling of adsorbed phenyl groups. Surf. Sci. 278, 19–32 (1992).

  17. 17.

    Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

  18. 18.

    Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

  19. 19.

    Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).

  20. 20.

    Pavlicek, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015).

  21. 21.

    Mairena, A. et al. The fate of bromine after temperature-induced dehydrogenation of on-surface synthesized bisheptahelicene. Chem. Sci. 10, 2998–3004 (2019).

  22. 22.

    Dienstmaier, J. F. et al. Synthesis of well-ordered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation. ACS Nano 5, 9737–9745 (2011).

  23. 23.

    Sakaguchi, H., Matsumura, H. & Gong, H. Electrochemical epitaxial polymerization of single-molecular wires. Nat. Mater. 3, 551–557 (2004).

  24. 24.

    Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011).

  25. 25.

    Carothers, W. H. Polymerization. Chem. Rev. 8, 353–426 (1931).

  26. 26.

    Szwarc, M. ‘Living’ polymers. Nature 178, 1168–1169 (1956).

  27. 27.

    Lutz, J.-F., Lehn, J.-M., Meijer, E. W. & Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 1, 16024 (2016).

  28. 28.

    Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

  29. 29.

    Merrifield, R. B. Solid phase synthesis (Nobel lecture). Angew. Chem. Int. Ed. 24, 799–892 (1985).

  30. 30.

    Matena, M., Riehm, T., Stöhr, M., Jung, T. A. & Gade, L. H. Transforming surface coordination polymers into covalent surface polymers: linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates. Angew. Chem. Int. Ed. 47, 2414–2417 (2008).

  31. 31.

    Sun, Q. et al. On-surface formation of one-dimensional polyphenylene through Bergman cyclization. J. Am. Chem. Soc. 135, 8448–8451 (2013).

  32. 32.

    Riss, A. et al. Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface. Nano Lett. 14, 2251–2255 (2014).

  33. 33.

    Sakaguchi, H., Song, S., Kojima, T. & Nakae, T. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 9, 57–63 (2017).

  34. 34.

    Okawa, Y. & Aono, M. Nanoscale control of chain polymerization. Nature 409, 683–684 (2001).

  35. 35.

    Okawa, Y. & Aono, M. Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions. J. Chem. Phys. 115, 2317–2322 (2001).

  36. 36.

    Okawa, Y. et al. Chemical wiring and soldering toward all-molecule electronic circuitry. J. Am. Chem. Soc. 133, 8227–8233 (2011).

  37. 37.

    Para, F. et al. Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface. Nat. Chem. 10, 1112–1117 (2018).

  38. 38.

    Hodge, P. Entropically driven ring-opening polymerization of strainless organic macrocycles. Chem. Rev. 114, 2278–2312 (2014).

  39. 39.

    Sassi, M., Oison, V., Debierre, J.-M. & Humbel, S. Modelling the two-dimensional polymerization of 1,4-benzene diboronic acid on a Ag surface. ChemPhysChem 10, 2480–2485 (2009).

  40. 40.

    DeGreef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

  41. 41.

    Björk, J. & Hanke, F. Towards design rules for covalent nanostructures on metal surfaces. Chem. Eur. J. 20, 928–934 (2014).

  42. 42.

    Bieri, M. et al. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010).

  43. 43.

    DiGiovannantonio, M. et al. Mechanistic picture and kinetic analysis of surface-confined Ullmann polymerization. J. Am. Chem. Soc. 138, 16696–16702 (2016).

  44. 44.

    Ferrighi, L. et al. Control of the intermolecular coupling of dibromotetracene on Cu(110) by the sequential activation of C–Br and C–H bonds. Chem. Eur. J. 21, 5826–5835 (2015).

  45. 45.

    Cai, L. et al. Direct formation of C–C double-bonded structural motifs by on-surface dehalogenative homocoupling of gem-dibromomethyl molecules. ACS Nano 12, 7959–7966 (2018).

  46. 46.

    Sun, Q. et al. Direct formation of C–C triple-bonded structural motifs by on-surface dehalogenative homocouplings of tribromomethyl-substituted arenes. Angew. Chem. Int. Ed. 57, 4035–4038 (2018).

  47. 47.

    Ertl, G. Elementary steps in heterogeneous catalysis. Angew. Chem. Int. Ed. 29, 1219–1227 (1990).

  48. 48.

    Weigelt, S. et al. Covalent interlinking of an aldehyde and an amine on an Au(111) surface in ultrahigh vacuum. Angew. Chem. Int. Ed. 46, 9227–9230 (2007).

  49. 49.

    Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012).

  50. 50.

    Veld, M. I., Iavicoli, P., Haq, S., Amabilino, D. B. & Raval, R. Unique intermolecular reaction of simple porphyrins at a metal surface gives covalent nanostructures. Chem. Commun. 1536–1538 (2008).

  51. 51.

    Lipton-Duffin, J. A., Ivasenko, O., Perepichka, D. F. & Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5, 592–597 (2009).

  52. 52.

    Zwaneveld, N. A. A. et al. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 130, 6678–6679 (2008).

  53. 53.

    Ourdjini, O. et al. Substrate-mediated ordering and defect analysis of a surface covalent organic framework. Phys. Rev. B 84, 125421 (2011).

  54. 54.

    Gutzler, R. et al. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 4456–4458 (2009).

  55. 55.

    Koch, M., Gille, M., Viertel, A., Hecht, S. & Grill, L. Substrate-controlled linking of molecular building blocks: Au(111) vs. Cu(111). Surf. Sci. 627, 70–74 (2014).

  56. 56.

    Pham, T. A. et al. Comparing Ullmann coupling on noble metal surfaces: on-surface polymerization of 1,3,6,8-tetrabromopyrene on Cu(111) and Au(111). Chem. Eur. J. 22, 5937–5944 (2016).

  57. 57.

    Simonov, K. A. et al. From graphene nanoribbons on Cu(111) to nanographene on Cu(110): critical role of substrate structure in the bottom-up fabrication strategy. ACS Nano 9, 8997–9011 (2015).

  58. 58.

    Pinardi, A. L. et al. Tailored formation of N-doped nanoarchitectures by diffusion-controlled on-surface (cyclo)-dehydrogenation of heteroaromatics. ACS Nano 7, 3676–3684 (2013).

  59. 59.

    Koch, M., Gille, M., Hecht, S. & Grill, L. Steering a cycloaddition reaction via the surface structure. Surf. Sci. 678, 194–200 (2018).

  60. 60.

    Saywell, A., Schwarz, J., Hecht, S. & Grill, L. Polymerization on stepped surfaces: alignment of polymers and identification of catalytic sites. Angew. Chem. Int. Ed. 51, 5096–5100 (2012).

  61. 61.

    Han, P. et al. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8, 9181–9187 (2014).

  62. 62.

    Simonov, K. A. et al. Comment on ‘Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity’. ACS Nano 9, 3399–3403 (2015).

  63. 63.

    Han, P. et al. Reply to “Comment on ‘Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity’”. ACS Nano 9, 3404–3405 (2015).

  64. 64.

    Huang, H. et al. Spatially resolved electronic structure of precise armchair graphene nanoribbons. Sci. Rep. 2, 983 (2012).

  65. 65.

    Sanchez-Sanchez, C. et al. Purely armchair or partially chiral: noncontact atomic force microscopy characterization of dibromo-bianthryl-based graphene nanoribbons grown on Cu(111). ACS Nano 10, 8006–8011 (2016).

  66. 66.

    Schulz, F. et al. Precursor geometry determines the growth mechanism in graphene nanoribbons. J. Phys. Chem. C 121, 2896–2904 (2017).

  67. 67.

    Villagomez, C. J., Sasaki, T., Tour, J. M. & Grill, L. Bottom-up assembly of molecular wagons on a surface. J. Am. Chem. Soc. 132, 16848 (2010).

  68. 68.

    Bieri, M. et al. Surface-supported 2D heterotriangulene polymers. Chem. Commun. 47, 10239–10241 (2011).

  69. 69.

    Bulou, H. & Massobrio, C. Mechanisms of exchange diffusion on fcc(111) transition metal surfaces. Phys. Rev. B 72, 205427 (2005).

  70. 70.

    Wang, W., Shi, X., Wang, S., VanHove, M. A. & Lin, N. Single-molecule resolution of an organometallic intermediate in a surface-supported Ullmann coupling reaction. J. Am. Chem. Soc. 133, 13264–13267 (2011).

  71. 71.

    Zint, S. et al. Imaging successive intermediate states of the on-surface Ullmann reaction on Cu(111): role of the metal coordination. ACS Nano 11, 4183–4190 (2017).

  72. 72.

    Eder, G. et al. Solution preparation of two-dimensional covalently linked networks by polymerization of 1,3,5-tri(4-iodophenyl)benzene on Au(111). ACS Nano 7, 3014–3021 (2013).

  73. 73.

    Adisoejoso, J. et al. A single-molecule-level mechanistic study of Pd-catalyzed and Cu-catalyzed homocoupling of aryl bromide on an Au(111) surface. Chem. Eur. J. 20, 4111–4116 (2014).

  74. 74.

    Kittelmann, M. et al. On-surface covalent linking of organic building blocks on a bulk insulator. ACS Nano 5, 8420–8425 (2011).

  75. 75.

    Kittelmann, M., Nimmrich, M., Lindner, R., Gourdon, A. & Kühnle, A. Sequential and site-specific on-surface synthesis on a bulk insulator. ACS Nano 7, 5614–5620 (2013).

  76. 76.

    Repp, J., Meyer, G., Stojkovic, S. M., Gourdon, A. & Joachim, J. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

  77. 77.

    Wang, S. et al. Giant edge state splitting at atomically precise graphene zigzag edges. Nat. Commun. 7, 11507 (2016).

  78. 78.

    Jacobse, P. H., Mangnus, M. J. J., Zevenhuizen, S. J. M. & Swart, I. Mapping the conductance of electronically decoupled graphene nanoribbons. ACS Nano 12, 7048–7056 (2018).

  79. 79.

    Bombis, C. et al. Single molecular wires connecting metallic and insulating surface areas. Angew. Chem. Int. Ed. 48, 9966–9970 (2009).

  80. 80.

    Berner, S. et al. Boron nitride nanomesh: functionality from a corrugated monolayer. Angew. Chem. Int. Ed. 46, 5115–5119 (2007).

  81. 81.

    Zhao, W., Dong, L., Huang, C., Win, Z. M. & Lin, N. Cu- and Pd-catalyzed Ullmann reaction on a hexagonal boron nitride layer. Chem. Commun. 52, 13225–13228 (2016).

  82. 82.

    Berner, N. C. et al. Adsorption of 5,10,15,20-tetrakis(4-bromophenyl)porphyrin on germanium(001). Phys. Status Solidi C 9, 1404–1407 (2012).

  83. 83.

    Olszowski, P. et al. Aryl halide C–C coupling on Ge(001):H surfaces. J. Phys. Chem. C 119, 27478–27482 (2015).

  84. 84.

    Kolmer, M. et al. Polymerization of polyanthrylene on a titanium dioxide (011)-(2×1) surface. Angew. Chem. Int. Ed. 52, 10300–10303 (2013).

  85. 85.

    Kolmer, M. et al. On-surface polymerization on a semiconducting oxide: aryl halide coupling controlled by surface hydroxyl groups on rutile TiO2(011). Chem. Commun. 51, 11276 (2015).

  86. 86.

    Koch, M., Ample, F., Joachim, C. & Grill, L. Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 7, 713–717 (2012).

  87. 87.

    Koch, M. Growth and Characterization of Single Molecular Wires on Metal Surfaces. PhD thesis, Free University Berlin (2013).

  88. 88.

    Lipton-Duffin, J. A. et al. Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction. Proc. Natl Acad. Sci. USA 107, 11200–11204 (2010).

  89. 89.

    Linden, S. et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012).

  90. 90.

    Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

  91. 91.

    Zhong, D. et al. Linear alkane polymerization on a gold surface. Science 334, 213–216 (2011).

  92. 92.

    Cai, Z., She, L., Wu, L. & Zhong, D. On-surface synthesis of linear polyphenyl wires guided by surface steric effect. J. Phys. Chem. C 120, 6619–6624 (2016).

  93. 93.

    Vasseur, G. et al. π band dispersion along conjugated organic nanowires synthesized on a metal oxide semiconductor. J. Am. Chem. Soc. 138, 5685–5692 (2016).

  94. 94.

    Dai, J. et al. The role of the substrate structure in the on-surface synthesis of organometallic and covalent oligophenylene chains. Phys. Chem. Chem. Phys 18, 20627–20634 (2016).

  95. 95.

    Fan, Q. et al. Surface-assisted organic synthesis of hyperbenzene nanotroughs. Angew. Chem. Int. Ed. 52, 4668–4672 (2013).

  96. 96.

    Lin, T., Shang, X. S., Adisoejoso, J., Liu, P. N. & Lin, N. Steering on-surface polymerization with metal-directed template. J. Am. Chem. Soc. 135, 3576–3582 (2013).

  97. 97.

    Otero, R. et al. Lock-and-key effect in the surface diffusion of large organic molecules probed by STM. Nat. Mater. 3, 779 (2004).

  98. 98.

    Miura, A. et al. Light- and STM tip-induced formation of one-dimensional and two-dimensional organic nanostructures. Langmuir 19, 6474–6482 (2003).

  99. 99.

    Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

  100. 100.

    Adisoejoso, J., Li, Y., Liu, J., Liu, P. N. & Lin, N. Two-dimensional metallo-supramolecular polymerization: toward size-controlled multi-strand polymers. J. Am. Chem. Soc. 134, 18526–18529 (2012).

  101. 101.

    Held, P. A., Fuchs, H. & Studer, A. Covalent-bond formation via on-surface chemistry. Chem. Eur. J. 23, 5874–5892 (2017).

  102. 102.

    Xi, M. & Bent, B. E. Mechanisms of the Ullmann coupling reaction in adsorbed monolayers. J. Am. Chem. Soc. 115, 7426–7433 (1993).

  103. 103.

    Lackinger, M. Surface-assisted Ullmann coupling. Chem. Commun. 53, 7872–7885 (2017).

  104. 104.

    McCarty, G. S. & Weiss, P. S. Formation and manipulation of protopolymer chains. J. Am. Chem. Soc. 126, 16772–16776 (2004).

  105. 105.

    Klappenberger, F. et al. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes. Acc. Chem. Res. 48, 2140–2150 (2015).

  106. 106.

    Marele, A. C. et al. Formation of a surface covalent organic framework based on polyester condensation. Chem. Commun. 48, 6779–6781 (2012).

  107. 107.

    Treier, M., Richardson, N. V. & Fasel, R. Fabrication of surface-supported low-dimensional polyimide networks. J. Am. Chem. Soc. 130, 14054–14055 (2008).

  108. 108.

    Weigelt, S. et al. Surface synthesis of 2D branched polymer nanostructures. Angew. Chem. Int. Ed. 47, 4406–4410 (2008).

  109. 109.

    Jiang, L. et al. Synthesis of pyrene-fused pyrazaacenes on metal surfaces: toward one-dimensional conjugated nanostructures. ACS Nano 10, 1033–1041 (2016).

  110. 110.

    Schlögl, S., Sirtl, T., Eichhorn, J., Heckl, W. M. & Lackinger, M. Synthesis of two-dimensional phenylene-boroxine networks through in vacuo condensation and on-surface radical addition. Chem. Commun. 47, 12355–12357 (2011).

  111. 111.

    Schuurmans, N. et al. Design and STM investigation of intramolecular folding in self-assembled monolayers on the surface. J. Am. Chem. Soc. 126, 13884–13885 (2004).

  112. 112.

    Schmitz, C. H., Ikonomov, J. & Sokolowski, M. Two-dimensional ordering of poly(p-phenylene-terephthalamide) on the Ag(111) surface investigated by scanning tunneling microscopy. J. Phys. Chem. C 113, 11984–11987 (2009).

  113. 113.

    Jacobse, P. H., vandenHoogenband, A., Moret, M.-E., Gebbink, R. J. M. K. & Swart, I. Aryl radical geometry determines nanographene formation on Au(111). Angew. Chem. Int. Ed. 55, 13052–13055 (2016).

  114. 114.

    Jacobse, P. H. et al. Electronic components embedded in a single graphene nanoribbon. Nat. Commun. 8, 119 (2017).

  115. 115.

    Zhang, H. M. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 137, 4022–4025 (2015).

  116. 116.

    Chen, Y.-C. et al. Tuning the band gap of graphene nanoribbons sythesized from molecular precursors. ACS Nano 7, 6123–6128 (2013).

  117. 117.

    Nguyen, G. D. et al. Bottom-up synthesis of N = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. C 120, 2684–2687 (2016).

  118. 118.

    Bronner, C. et al. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. 52, 4422–4425 (2013).

  119. 119.

    Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896–900 (2014).

  120. 120.

    Kawai, S. et al. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 6, 8098 (2015).

  121. 121.

    Cloke, R. R. et al. Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons. J. Am. Chem. Soc. 137, 8872–8875 (2015).

  122. 122.

    Krasnikov, S. A. et al. Formation of extended covalently bonded Ni porphyrin networks on the Au(111) surface. Nano Res. 4, 376–384 (2011).

  123. 123.

    Koudia, M. & Abel, M. Step-by-step on-surface synthesis: from manganese phthalocyanines to their polymeric form. Chem. Commun. 59, 8565–8567 (2014).

  124. 124.

    Bieri, M. et al. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 2009, 6919–6921 (2009).

  125. 125.

    Eichhorn, J. et al. On-surface Ullmann coupling: the influence of kinetic reaction parameters on the morphology and quality of covalent networks. ACS Nano 8, 7880–7889 (2014).

  126. 126.

    Ma, C. et al. Seamless staircase electrical contact to semiconducting graphene nanoribbons. Nano Lett. 17, 6241–6247 (2017).

  127. 127.

    Müllegger, S. & Winkler, A. Dehydrogenation of oligo-phenylenes on gold surfaces. Surf. Sci. 600, 3982–3986 (2006).

  128. 128.

    Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).

  129. 129.

    Guan, C.-Z., Wang, D. & Wan, L.-J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48, 2943–2945 (2012).

  130. 130.

    Dienstmaier, J. F. et al. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6, 7234–7242 (2012).

  131. 131.

    Spitzer, S. et al. Solvent-free on-surface synthesis of boroxine COF monolayers. Chem. Commun. 53, 5147–5150 (2017).

  132. 132.

    Arado, O. D. et al. On-surface azide-alkyne cycloaddition on Au(111). ACS Nano 7, 8509–8515 (2013).

  133. 133.

    Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

  134. 134.

    Gröning, O. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018).

  135. 135.

    Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).

  136. 136.

    Nacci, C. et al. Conductance of a single flexible molecular wire composed of alternating donor and acceptor units. Nat. Commun. 6, 7397 (2015).

  137. 137.

    Sakaguchi, H., Matsumura, H., Gong, H. & Abouelwafa, A. M. Direct visualization of the formation of single-molecule conjugated copolymers. Science 310, 1002–1006 (2005).

  138. 138.

    Clair, S., Ourdjini, O., Abel, M. & Porte, L. Tip- or electron beam-induced surface polymerization. Chem. Commun. 47, 8028–8030 (2011).

  139. 139.

    Deshpande, A. et al. Self-assembly and photopolymerization of sub-2 nm one-dimensional organic nanostructures on graphene. J. Am. Chem. Soc. 134, 16759–16764 (2012).

  140. 140.

    Shen, Q. et al. Self-assembled two-dimensional nanoporous molecular arrays and photoinduced polymerization of 4-bromo-4′-hydroxybiphenyl on Ag(111). J. Chem. Phys. 142, 101902 (2015).

  141. 141.

    Ho, W. Inducing and viewing bond selected chemistry with tunneling electrons. Acc. Chem. Res. 31, 567–573 (1998).

  142. 142.

    Hla, S.-W., Meyer, G. & Rieder, K.-H. Inducing single-molecule chemical reactions with a UHV-STM: a new dimension for nano-science and technology. ChemPhysChem 2, 361–366 (2001).

  143. 143.

    Hahn, J. R. & Ho, W. Oxidation of a single carbon monoxide molecule manipulated and induced with a scanning tunneling microscope. Phys. Rev. Lett. 87, 166102 (2001).

  144. 144.

    Anggara, K., Leung, L., Timm, M. J., Hu, Z. & Polanyi, J. C. Approaching the forbidden fruit of reaction dynamics: aiming reagent at selected impact parameters. Sci. Adv. 4, eaau2821 (2018).

  145. 145.

    Wegner, G. Topochemical polymerization of monomers with conjugated triple bonds. Makromol. Chem. 154, 35–48 (1972).

  146. 146.

    Pavlicek, N. et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat. Chem. 10, 853–858 (2018).

  147. 147.

    Patera, L. L. et al. Real-time imaging of adatom-promoted graphene growth on nickel. Science 359, 1243–1246 (2018).

  148. 148.

    Chong, M. C. et al. Narrow-line single-molecule transducer between electronic circuits and surface plasmons. Phys. Rev. Lett. 116, 036802 (2016).

  149. 149.

    Chong, M. C. et al. Ordinary and hot electroluminescence from single-molecule devices: controlling the emission color by chemical engineering. Nano Lett. 16, 6480–6484 (2016).

  150. 150.

    Kawai, S. et al. Quantifying the atomic-level mechanics of single long physisorbed molecular chains. Proc. Natl Acad. Sci. USA 111, 3968–3972 (2014).

  151. 151.

    Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957–961 (2016).

  152. 152.

    Koch, M. et al. How structural defects affect the mechanical and electrical properties of single molecular wires. Phys. Rev. Lett. 121, 047701 (2018).

  153. 153.

    Pavlicek, N. & Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 1, 0005 (2017).

  154. 154.

    Wang, S., Wang, W. & Lin, N. Resolving band-structure evolution and defect-induced states of single conjugated oligomers by scanning tunneling microscopy and tight-binding calculations. Phys. Rev. Lett. 106, 206803 (2011).

  155. 155.

    Vasseur, G. et al. Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires. Nat. Commun. 7, 10235 (2016).

  156. 156.

    Morchutt, C. et al. Interplay of chemical and electronic structure on the single-molecule level in 2D polymerization. ACS Nano 10, 11511–11518 (2016).

  157. 157.

    Gutzler, R. & Perepichka, D. F. π−electron conjugation in two dimensions. J. Am. Chem. Soc. 135, 16585–16594 (2013).

  158. 158.

    Cardenas, L. et al. Synthesis and electronic structure of a two dimensional π-conjugated polythiophene. Chem. Sci. 4, 3263–3268 (2013).

  159. 159.

    Gutzler, R. Band-structure engineering in conjugated 2D polymers. Phys. Chem. Chem. Phys 18, 29092–29100 (2016).

  160. 160.

    Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018).

  161. 161.

    Lopinski, G. P., Wayner, D. D. M. & Wolkow, R. A. Self-directed growth of molecular nanostructures on silicon. Nature 406, 48–51 (2000).

  162. 162.

    Maksymovych, P., Sorescu, D. C., Jordan, K. D. & Yates, J. T. Collective reactivity of molecular chains self-assembled on a surface. Science 322, 1664–1667 (2008).

  163. 163.

    Haq, S. et al. Versatile bottom-up construction of diverse macromolecules on a surface observed by scanning tunneling microscopy. ACS Nano 8, 8856–8870 (2014).

  164. 164.

    Liu, J. & Wöll, C. Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges. Chem. Soc. Rev. 46, 5730–5770 (2017).

  165. 165.

    Wintterlin, J. & Bocquet, M.-L. Graphene on metal surfaces. Surf. Sci. 603, 1841–1852 (2009).

  166. 166.

    Nagashima, A., Tejima, N., Gamou, Y., Kawai, T. & Oshima, C. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys. Rev. B 51, 4606–4613 (1995).

  167. 167.

    Fairbrother, A. et al. High vacuum synthesis and ambient stability of bottom-up graphene nanoribbons. Nanoscale 9, 2785–2792 (2017).

  168. 168.

    Chen, Z. P. et al. Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J. Am. Chem. Soc. 138, 15488–15496 (2016).

  169. 169.

    Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016).

  170. 170.

    Gutzler, R., Stepanow, S., Grumelli, D., Lingenfelder, M. & Kern, K. Mimicking enzymatic active sites on surfaces for energy conversion chemistry. Acc. Chem. Res. 48, 2132–2139 (2015).

  171. 171.

    Wurster, B., Grumelli, D., Hötger, D., Gutzler, R. & Kern, K. Driving the oxygen evolution reaction by nonlinear cooperativity in bimetallic coordination catalysts. J. Am. Chem. Soc. 138, 3623–3626 (2016).

  172. 172.

    Feng, M., Sun, H., Zhao, J. & Petek, H. Self-catalyzed carbon dioxide adsorption by metal-organic chains on gold surfaces. ACS Nano 8, 8644–8652 (2014).

  173. 173.

    Aviram, A. & Ratner, M. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

  174. 174.

    Kuang, G. et al. Negative differential conductance in polyporphyrin oligomers with nonlinear backbones. J. Am. Chem. Soc. 140, 570–573 (2018).

  175. 175.

    Nacci, C., Viertel, A., Hecht, S. & Grill, L. Covalent assembly and characterization of nonsymmetrical single-molecule nodes. Angew. Chem. Int. Ed. 55, 13724–13728 (2016).

  176. 176.

    DiLullo, A. et al. Molecular Kondo chain. Nano Lett. 12, 3174–3179 (2012).

  177. 177.

    Bazarnik, M. et al. Toward tailored all-spin molecular device. Nano Lett. 16, 577–582 (2016).

  178. 178.

    Llinas, J. P. et al. Short-channel field effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017).

  179. 179.

    Kawai, S. et al. Diacetylene linked anthracene oligomers synthesized by one-shot homocoupling of trimethylsilyl on Cu(111). ACS Nano 12, 8791–8797 (2018).

Download references

Acknowledgements

We are indebted to our co-workers for their valuable contributions to the field over the years that have been generously supported by the European Union (via integrated projects ‘pico inside’, ‘ARTIST’ and ‘AtMol’) as well as the German Research Foundation (DFG via GR 2697/1-1 as well as SFB 658 and SFB 951). This Review Article is dedicated to the memory of Karl-Heinz Rieder.

Author information

L.G. and S.H. contributed equally to the manuscript.

Correspondence to Leonhard Grill or Stefan Hecht.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grill, L., Hecht, S. Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020). https://doi.org/10.1038/s41557-019-0392-9

Download citation