Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photodriven quantum teleportation of an electron spin state in a covalent donor–acceptor–radical system

Abstract

Quantum teleportation transfers the quantum state of a system over an arbitrary distance from one location to another through the agency of quantum entanglement. Because quantum teleportation is essential to many aspects of quantum information science, it is important to establish this phenomenon in molecular systems whose structures and properties can be tailored by synthesis. Here, we demonstrate electron spin state teleportation in an ensemble of covalent organic donor–acceptor–stable radical (D–A–R) molecules. Following preparation of a specific electron spin state on R in a magnetic field using a microwave pulse, photoexcitation of A results in the formation of an entangled electron spin pair D•+–A•−. The spontaneous ultrafast chemical reaction D•+–A•−–R → D•+–A–R constitutes the Bell state measurement step necessary to carry out spin state teleportation. Quantum state tomography of the R and D•+ spin states using pulse electron paramagnetic resonance spectroscopy shows that the spin state of R is teleported to D•+ with high fidelity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electron spin state teleportation protocol.
Fig. 2: FS-ESE spectra and transient nutation data.
Fig. 3: Quantum state tomography.

Similar content being viewed by others

Data availability

The datasets generated and analysed in the current study are available from the corresponding author on reasonable request.

References

  1. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A. & Braunstein, S. L. Advances in quantum teleportation. Nature Photon. 9, 641–652 (2015).

    Article  CAS  Google Scholar 

  2. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

    Article  CAS  Google Scholar 

  3. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  CAS  Google Scholar 

  4. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  CAS  Google Scholar 

  5. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    Article  CAS  Google Scholar 

  6. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    Article  CAS  Google Scholar 

  7. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

    Article  CAS  Google Scholar 

  8. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  CAS  Google Scholar 

  9. Steffen, L. et al. Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500, 319–324 (2013).

    Article  CAS  Google Scholar 

  10. Nielsen, M. A., Knill, E. & Laflamme, R. Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998).

    Article  CAS  Google Scholar 

  11. Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013).

    Article  CAS  Google Scholar 

  12. Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    Article  CAS  Google Scholar 

  13. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschritte der Physik 48, 771–783 (2000).

    Article  Google Scholar 

  14. Thurnauer, M. C. & Norris, J. R. An electron spin echo phase shift observed in photosynthetic algae: possible evidence for dynamic radical pair interactions. Chem. Phys. Lett. 76, 557–561 (1980).

    Article  CAS  Google Scholar 

  15. Sakaguchi, Y., Hayashi, H., Murai, H. & I’Haya, Y. J. CIDEP study of the photochemical reactions of carbonyl compounds showing the external magnetic field effect in a micelle. Chem. Phys. Lett. 110, 275–279 (1984).

    Article  CAS  Google Scholar 

  16. Closs, G. L., Forbes, M. D. E. & Norris, J. R. Spin-polarized electron-paramagnetic resonance-spectra of radical pairs in micelles—observation of electron spin–spin interactions. J. Phys. Chem. 91, 3592–3599 (1987).

    Article  CAS  Google Scholar 

  17. Hasharoni, K. et al. Mimicry of the radical pair and triplet states in photosynthetic reaction centers with a synthetic model. J. Am. Chem. Soc. 117, 8055–8056 (1995).

    Article  CAS  Google Scholar 

  18. Carbonera, D. et al. EPR investigation of photoinduced radical pair formation and decay to a triplet state in a carotene−porphyrin−fullerene triad. J. Am. Chem. Soc. 120, 4398–4405 (1998).

    Article  CAS  Google Scholar 

  19. Kobori, Y. et al. Primary charge-recombination in an artificial photosynthetic reaction center. Proc. Natl Acad. Sci. USA 102, 10017–10022 (2005).

    Article  CAS  Google Scholar 

  20. Sheppard, D. M. W. et al. Millitesla magnetic field effects on the photocycle of an animal cryptochrome. Sci. Rep. 7, 42228 (2017).

    Article  CAS  Google Scholar 

  21. Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–360 (2008).

    Article  Google Scholar 

  22. Carmieli, R., Thazhathveetil, A. K., Lewis, F. D. & Wasielewski, M. R. Photoselective DNA hairpin spin switches. J. Am. Chem. Soc. 135, 10970–10973 (2013).

    Article  CAS  Google Scholar 

  23. Olshansky, J. H., Krzyaniak, M. D., Young, R. M. & Wasielewski, M. R. Photogenerated spin-entangled qubit (radical) pairs in DNA hairpins: observation of spin delocalization and coherence. J. Am. Chem. Soc. 141, 2152–2160 (2019).

    Article  CAS  Google Scholar 

  24. Salikhov, K. M., Golbeck, J. H. & Stehlik, D. Quantum teleportation across a biological membrane by means of correlated spin pair dynamics in photosynthetic reaction centers. Appl. Magn. Reson. 31, 237–252 (2007).

    Article  CAS  Google Scholar 

  25. Kandrashkin, Y. E. & Salikhov, K. M. Numerical simulation of quantum teleportation across biological membrane in photosynthetic reaction centers. Appl. Magn. Reson. 37, 549–566 (2010).

    Article  Google Scholar 

  26. Volkov, M. Y. & Salikhov, K. M. Pulse protocols for quantum computing with electron spins as qubits. Appl. Magn. Reson. 41, 145–154 (2011).

    Article  Google Scholar 

  27. Miura, T. & Wasielewski, M. R. Manipulating photogenerated radical ion pair lifetimes in wire-like molecules using microwave pulses: molecular spintronic gates. J. Am. Chem. Soc. 133, 2844–2847 (2011).

    Article  CAS  Google Scholar 

  28. Kobr, L. et al. Fast photodriven electron spin coherence transfer: a quantum gate based on a spin exchange J-jump. J. Am. Chem. Soc. 134, 12430–12433 (2012).

    Article  CAS  Google Scholar 

  29. Krzyaniak, M. D. et al. Fast photo-driven electron spin coherence transfer: the effect of electron-nuclear hyperfine coupling on coherence dephasing. J. Mater. Chem. C 3, 7962–7967 (2015).

    Article  CAS  Google Scholar 

  30. Kelber, J. B. et al. Synthesis and investigation of donor–porphyrin–acceptor triads with long-lived photo-induced charge-separate states. Chem. Sci. 6, 6468–6481 (2015).

    Article  CAS  Google Scholar 

  31. Nelson, J. N. et al. Zero quantum coherence in a series of covalent spin-correlated radical pairs. J. Phys. Chem. A 121, 2241–2252 (2017).

    Article  CAS  Google Scholar 

  32. Nelson, J. N. et al. Effect of electron-nuclear hyperfine interactions on multiple-quantum coherences in photogenerated covalent radical (qubit) pairs. J. Phys. Chem. A 122, 9392–9402 (2018).

    Article  CAS  Google Scholar 

  33. Jones, J. A. & Hore, P. J. Spin-selective reactions of radical pairs act as quantum measurements. Chem. Phys. Lett. 488, 90–93 (2010).

    Article  CAS  Google Scholar 

  34. Rugg, B. K. et al. Spin-selective photoreduction of a stable radical within a covalent donor–acceptor–radical triad. J. Am. Chem. Soc. 139, 15660–15663 (2017).

    Article  CAS  Google Scholar 

  35. Bell, J. S. On the Einstein–Poldolsky–Rosen paradox. Physics 1, 195–200 (1964).

    Article  Google Scholar 

  36. Hamilton, W. O. & Pake, G. E. Linear antiferromagnetism in the organic free radical 1,3‐bisdiphenylene‐2‐phenyl allyl. J. Chem. Phys. 39, 2694–2697 (1963).

    Article  CAS  Google Scholar 

  37. Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance 1st edn (Oxford Univ. Press, 2001).

  38. Bao, X.-H. et al. Quantum teleportation between remote atomic-ensemble quantum memories. Proc. Natl Acad. Sci. USA 109, 20347–20351 (2012).

    Article  CAS  Google Scholar 

  39. Grosshans, F. & Grangier, P. Quantum cloning and teleportation criteria for continuous quantum variables. Phys. Rev. A 64, 010301 (2001).

    Article  Google Scholar 

  40. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation under grant no. CHE-1565925.

Author information

Authors and Affiliations

Authors

Contributions

M.R.W. conceived of the project. B.K.R. synthesized the molecules, performed EPR experiments and analysed the data. B.T.P. performed the transient optical spectroscopy and B.K.R. analysed the results with input from B.T.P., R.M.Y. and M.R.W. M.D.K. designed and implemented AWG upgrades to the Q-band EPR spectrometer, obtained EPR data and, along with B.K.R. and M.R.W., analysed the data. M.A.R. provided theory input for data analysis. B.K.R., M.D.K. and M.R.W. wrote the manuscript with input and edits from all authors.

Corresponding author

Correspondence to Michael R. Wasielewski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Characterization, Supplementary Data, Supplementary Figs. 1–7, Supplementary Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rugg, B.K., Krzyaniak, M.D., Phelan, B.T. et al. Photodriven quantum teleportation of an electron spin state in a covalent donor–acceptor–radical system. Nat. Chem. 11, 981–986 (2019). https://doi.org/10.1038/s41557-019-0332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0332-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing