Identification of autoinducing thiodepsipeptides from staphylococci enabled by native chemical ligation

Abstract

Staphylococci secrete autoinducing peptides (AIPs) as signalling molecules to regulate population-wide behaviour. AIPs from non-Staphylococcus aureus staphylococci have received attention as potential antivirulence agents to inhibit quorum sensing and virulence gene expression in the human pathogen Staphylococcus aureus. However, only a limited number of AIP structures from non-S. aureus staphylococci have been identified to date, as the minute amounts secreted in complex media render it difficult. Here, we report a method for the identification of AIPs by exploiting their thiolactone functionality for chemoselective trapping and enrichment of the compounds from the bacterial supernatant. Standard liquid chromatography mass spectrometry analysis, guided by genome sequencing data, then readily provides the AIP identities. Using this approach, we confirm the identity of five known AIPs and identify the AIPs of eleven non-S. aureus species, and we expect that the method should be extendable to AIP-expressing Gram-positive bacteria beyond the Staphylococcus genus.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of the reported workflow.
Fig. 2: NCL trapping and sequence-guided identification of AIP-II (2).
Fig. 3: Synthesis of AIPs.
Fig. 4: Detection limit of NCL trapping for synthetic L. monocytogenes AIP (20).

Data availability

Primary sequencing data are deposited at the National Centre for Biotechnology Information (NCBI GenBank). All other data generated and analysed during this study are available in the article and its Supplementary Information. Further details are available from the corresponding author on request.

References

  1. 1.

    Ji, G., Beavis, R. C. & Novick, R. P. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl Acad. Sci. USA 92, 12055–12059 (1995).

    CAS  Article  Google Scholar 

  2. 2.

    Novick, R. P. & Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet. 42, 541–564 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Thoendel, M., Kavanaugh, J. S., Flack, C. E. & Horswill, A. R. Peptide signaling in the staphylococci. Chem. Rev. 111, 117–151 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Wang, B. & Muir, T. W. Regulation of virulence in Staphylococcus aureus: molecular mechanisms and remaining puzzles. Cell Chem. Biol. 23, 214–224 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Ji, G., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    Otto, M., Süßmuth, R., Vuong, C., Jung, G. & Götz, F. Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett. 450, 257–262 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    Mayville, P. et al. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl Acad. Sci. USA 96, 1218–1223 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    McDowell, P. et al. Structure, activity and evolution of the group I thiolactone peptide quorum-sensing system of Staphylococcus aureus. Mol. Microbiol. 41, 503–512 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    Lyon, G. J., Mayville, P., Muir, T. W. & Novick, R. P. Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase AgrC. Proc. Natl Acad. Sci. USA 97, 13330–13335 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    Lyon, G. J., Wright, J. S., Muir, T. W. & Novick, R. P. Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry 41, 10095–10104 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    George, E. A., Novick, R. P. & Muir, T. W. Cyclic peptide inhibitors of staphylococcal virulence prepared by Fmoc-based thiolactone peptide synthesis. J. Am. Chem. Soc. 130, 4914–4924 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    Tal-Gan, Y., Stacy, D. M., Foegen, M. K., Koenig, D. W. & Blackwell, H. E. Highly potent inhibitors of quorum sensing in Staphylococcus aureus revealed through a systematic synthetic study of the group-III autoinducing peptide. J. Am. Chem. Soc. 135, 7869–7882 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Tal-Gan, Y., Stacy, D. M. & Blackwell, H. E. N-Methyl and peptoid scans of an autoinducing peptide reveal new structural features required for inhibition and activation of AgrC quorum sensing receptors in Staphylococcus aureus. Chem. Commun. 50, 3000–3003 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Johnson, J. G., Wang, B., Debelouchina, G. T., Novick, R. P. & Muir, T. W. Increasing AIP macrocycle size reveals key features of agr activation in Staphylococcus aureus. ChemBioChem 16, 1093–1100 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Tal-Gan, Y., Ivancic, M., Cornilescu, G., Yang, T. & Blackwell, H. E. Highly stable, amide-bridged autoinducing peptide analogues that strongly inhibit the AgrC quorum sensing receptor in Staphylococcus aureus. Angew. Chem. Int. Ed. 55, 8913–8917 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Hansen, A. M. et al. Lactam hybrid analogues of solonamide B and autoinducing peptides as potent S. aureus AgrC antagonists. Eur. J. Med. Chem. 152, 370–376 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Yang, T., Tal-Gan, Y., Paharik, A. E., Horswill, A. R. & Blackwell, H. E. Structure–function analyses of a Staphylococcus epidermidis autoinducing peptide reveals motifs critical for AgrC-type receptor modulation. ACS Chem. Biol. 11, 1982–1991 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Canovas, J. et al. Cross-talk between Staphylococcus aureus and other staphylococcal species via the agr quorum sensing system. Front. Microbiol. 7, 1733 (2016).

    Article  Google Scholar 

  19. 19.

    Gless, B. H. et al. Structure–activity relationship study based on autoinducing peptide (AIP) from dog pathogen S. schleiferi. Org. Lett. 19, 5276–5279 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Paharik, A. E. et al. Coagulase-negative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing. Cell Host Microbe 22, 746–756 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Gordon, C. P., Olson, S. D., Lister, J. L., Kavanaugh, J. S. & Horswill, A. R. Truncated autoinducing peptides as antagonists of Staphylococcus lugdunensis quorum sensing. J. Med. Chem. 59, 8879–8888 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Otto, M., Süßmuth, R., Jung, G. & Götz, F. Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Lett. 424, 89–94 (1998).

    CAS  Article  Google Scholar 

  23. 23.

    Jarraud, S. et al. Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus. J. Bacteriol. 182, 6517–6522 (2000).

    CAS  Article  Google Scholar 

  24. 24.

    Kalkum, M., Lyon, G. J. & Chait, B. T. Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc. Natl Acad. Sci. USA 100, 2795–2800 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    Olson, M. E. et al. Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization. J. Bacteriol. 196, 3482–3493 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Todd, D. A. et al. Signal Biosynthesis Inhibition with Ambuic Acid as a Strategy To Target Antibiotic-Resistant Infections. Antimicrob. Agents Chemother. 61, e00263-17 (2017).

    Article  Google Scholar 

  27. 27.

    Tsuda, S., Yoshiya, T., Mochizuki, M. & Nishiuchi, Y. Synthesis of cysteine-rich peptides by native chemical ligation without use of exogenous thiols. Org. Lett. 17, 1806–1809 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Wang, B., Zhao, A., Novick, R. P. & Muir, T. W. Key driving forces in the biosynthesis of autoinducing peptides required for staphylococcal virulence. Proc. Natl Acad. Sci. USA 112, 10679–10684 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Rink, H. Solid-phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methylester resin. Tetrahedron Lett. 28, 3787–3790 (1987).

    CAS  Article  Google Scholar 

  30. 30.

    Dufour, P. et al. High genetic variability of the agr locus in Staphylococcus species. J. Bacteriol. 184, 1180–1186 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    Pyörälä, S. & Taponen, S. Coagulase-negative staphylococci—emerging mastitis pathogens. Vet. Microbiol. 134, 3–8 (2009).

    Article  Google Scholar 

  32. 32.

    Devriese, L. A., Hájek, V., Oeding, P., Meyer, S. A. & Schleifer, K. H. Staphylococcus hyicus (Sompolinsky 1953) comb. nov. and Staphylococcus hyicus subsp. chromogenes subsp. nov. Int. J. Syst. Evol. Microbiol. 28, 482–490 (1978).

    Google Scholar 

  33. 33.

    Tong, S. Y. et al. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int. J. Syst. Evol. Microbiol. 65, 15–22 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Novick, R. P., Ross, H. F., Figueiredo, A. M. S., Abramochkin, G. & Muir, T. W. Activation and inhibition of the staphylococcal AGR system. Science 287, 391 (2000).

    Article  Google Scholar 

  35. 35.

    Kamath, U., Singer, C. & Isenberg, H. D. Clinical significance of Staphylococcus warneri bacteremia. J. Clin. Microbiol. 30, 261–264 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Webster, J. A. et al. Identification of the Staphylococcus sciuri species group with EcoRI fragments containing rRNA sequences and description of Staphylococcus vitulus sp. nov. Int. J. Syst. Evol. Microbiol. 44, 454–460 (1994).

    CAS  Google Scholar 

  37. 37.

    Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 9, eaah4680 (2017).

    Article  Google Scholar 

  38. 38.

    Barros, E. M., Ceotto, H., Bastos, M. C. F., dos Santos, K. R. N. & Giambiagi-deMarval, M. Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J. Clin. Microbiol. 50, 166–168 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Robinson, D. A., Monk, A. B., Cooper, J. E., Feil, E. J. & Enright, M. C. Evolutionary genetics of the accessory gene regulator (agr) locus in Staphylococcus aureus. J. Bacteriol. 187, 8312–8321 (2005).

    CAS  Article  Google Scholar 

  40. 40.

    Thoendel, M. & Horswill, A. R. Biosynthesis of peptide signals in Gram-positive bacteria. Adv. Appl. Microbiol. 71, 91–112 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    Autret, N., Raynaud, C., Dubail, I., Berche, P. & Charbit, A. Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence. Infect. Immun. 71, 4463–4471 (2003).

    CAS  Article  Google Scholar 

  42. 42.

    Riedel, C. U. et al. AgrD‐dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol. Microbiol. 71, 1177–1189 (2009).

    CAS  Article  Google Scholar 

  43. 43.

    Vivant, A.-L., Garmyn, D., Gal, L. & Piveteau, P. The Agr communication system provides a benefit to the populations of Listeria monocytogenes in soil. Front. Cell. Infect. Microbiol. 4, 160 (2014).

    Article  Google Scholar 

  44. 44.

    Zetzmann, M., Sánchez-Kopper, A., Waidmann, M. S., Blombach, B. & Riedel, C. U. Identification of the agr peptide of Listeria monocytogenes. Front. Microbiol. 7, 989 (2016).

    Article  Google Scholar 

  45. 45.

    Piewngam, P. et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562, 532–537 (2018).

    CAS  Article  Google Scholar 

  46. 46.

    Lee, A. S. et al. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 4, 18033 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Martín-Gago for fruitful input and T.W. Muir for encouraging comments. P. S. Andersen is acknowledged for providing bacterial strains. This work was supported by the Carlsberg Foundation (2013-01-0333 to C.A.O.) and University of Copenhagen (PhD fellowship to B.H.G.).

Author information

Affiliations

Authors

Contributions

B.H.G. and C.A.O. conceptualized the study. B.H.G., M.S.B., P.P. and M.B. performed the experiments. B.H.G. and C.A.O. wrote the original draft of the manuscript. B.H.G., M.S.B., H.I. and C.A.O. reviewed and edited the final manuscript. C.A.O. acquired funding. H.I. and C.A.O. provided resources and materials. H.I. and C.A.O. supervised the study.

Corresponding author

Correspondence to Christian A. Olsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary experimental data, chemical compound characterization data, Supplementary Figs. 1–26, Supplementary Tables 1–3 and copies of 1H and 13C NMR spectra.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gless, B.H., Bojer, M.S., Peng, P. et al. Identification of autoinducing thiodepsipeptides from staphylococci enabled by native chemical ligation. Nat. Chem. 11, 463–469 (2019). https://doi.org/10.1038/s41557-019-0256-3

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing