Braiding, branching and chiral amplification of nanofibres in supramolecular gels


Helical nanofibres play key roles in many biological processes. Entanglements between helices can aid gelation by producing thick, interconnected fibres, but the details of this process are poorly understood. Here, we describe the assembly of an achiral oligo(urea) peptidomimetic compound into supramolecular helices. Aggregation of adjacent helices leads to the formation of fibrils, which further intertwine to produce high-fidelity braids with periodic crossing patterns. A braid theory analysis suggests that braiding is governed by rigid topological constraints, and that branching occurs due to crossing defects in the developing braids. Mixed-chirality helices assemble into relatively complex, odd-stranded braids, but can also form helical bundles by undergoing inversions of chirality. The oligo(urea) assemblies are also highly sensitive to chiral amplification, proposed to occur through a majority-rules mechanism, whereby trace chiral materials can promote the formation of gels containing only homochiral helices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: SEM micrographs and rheological properties of oligo(urea) aggregates from DMF.
Fig. 2: Observed and simulated geometry of twisted ribbons in gels of 2.
Fig. 3: SEM images illustrating branching of gel fibres due to braiding defects.
Fig. 4: SEM micrographs of braid topologies observed in gels of 2.
Fig. 5: Chiral amplification of oligo(urea) fibrils.

Data availability

All the underlying research data are available from in accordance with the UK Research Councils’ open data policy, and from the corresponding authors upon reasonable request.


  1. 1.

    de Loos, M., Feringa, B. L. & van Esch, J. H. Design and application of self-assembled low molecular weight hydrogels. Eur. J. Org. Chem. (2005).

  2. 2.

    Terech, P. & Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3159 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Yang, S. et al. On the origin of helical mesostructures. J. Am. Chem. Soc. 128, 10460–10466 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Aggeli, A. et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils and fibers. Proc. Natl Acad. Sci. USA 98, 11857–11862 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kurouski, D. et al. Is supramolecular filament chirality the underlying cause of major morphology differences in amyloid fibrils? J. Am. Chem. Soc. 136, 2302–2312 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Usov, I., Adamcik, J. & Mezzenga, R. Polymorphism complexity and handedness inversion in serum albumin amyloid fibrils. ACS Nano 7, 10465–10474 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Xing, K. et al. Triple helical molecular braid and parallel packed wavy chain-based supramolecular organic frameworks with conformation- and packing-dependent luminescent properties. Cryst. Growth Des. 16, 4727–4735 (2016).

    CAS  Google Scholar 

  9. 9.

    Weiss, J., Jahnke, E., Severin, N., Rabe, J. P. & Frauenrath, H. Consecutive conformational transitions and deaggregation of multiple-helical poly(diacetylene)s. Nano Lett. 8, 1660–1666 (2008).

    CAS  Google Scholar 

  10. 10.

    Piechocka, I. K. et al. Multi-scale strain-stiffening of semiflexible bundle networks. Soft Matter 12, 2145–2156 (2016).

    CAS  Google Scholar 

  11. 11.

    Jaspers, M. et al. Ultra-responsive soft matter from strain-stiffening hydrogels. Nat. Commun. 5, 5808 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Pritchard, R. H., Huang, Y. Y. & Terentjev, E. M. Mechanics of biological networks: from the cell cytoskeleton to connective tissue. Soft Matter 10, 1864–1884 (2014).

    CAS  Google Scholar 

  13. 13.

    Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    CAS  Google Scholar 

  14. 14.

    Burchard, W. Networks in nature. Br. Polym. J. 17, 154–163 (1985).

    CAS  Google Scholar 

  15. 15.

    Everaers, R. et al. Rheology and microscopic topology of entangled polymeric liquids. Science 303, 823–826 (2004).

    CAS  Google Scholar 

  16. 16.

    Armon, S., Aharoni, H., Moshe, M. & Sharon, E. Shape selection in chiral ribbons: from seed pods to supramolecular assemblies. Soft Matter 10, 2733–2740 (2014).

    CAS  Google Scholar 

  17. 17.

    De Abreu, F. V., Dias, R. G. & von Ferber, C. Pseudo-knots in helical structures. Soft Matter 4, 731–734 (2008).

    Google Scholar 

  18. 18.

    Serna, P., Bunin, G. & Nahum, A. Topological constraints in directed polymer melts. Phys. Rev. Lett. 115, 5 (2015).

    Google Scholar 

  19. 19.

    Horner, K. E., Miller, M. A., Steed, J. W. & Sutcliffe, P. M. Knot theory in modern chemistry. Chem. Soc. Rev. 45, 6432–6448 (2016).

    CAS  Google Scholar 

  20. 20.

    Fielden, S. D. P., Leigh, D. A. & Woltering, S. L. Molecular knots. Angew. Chem. Int. Ed. 56, 11166–11194 (2017).

    CAS  Google Scholar 

  21. 21.

    Alvariño, C., Simond, D., Lorente, P. M., Besnard, C. & Williams, A. F. Chains, necklaces and weaving chain-link grids from self-assembly reactions. Chem. Eur. J. 21, 8851–8858 (2015).

    Google Scholar 

  22. 22.

    Yang, G. P., Hou, L., Luan, X. J., Wu, B. A. & Wang, Y. Y. Molecular braids in metal–organic frameworks. Chem. Soc. Rev. 41, 6992–7000 (2012).

    CAS  Google Scholar 

  23. 23.

    Zhang, J. P., Qi, X. L., He, C. T., Wang, Y. & Chen, X. M. Interweaving isomerism and isomerization of molecular chains. Chem. Commun. 47, 4156–4158 (2011).

    CAS  Google Scholar 

  24. 24.

    Byrne, P., Lloyd, G. O., Clarke, N. & Steed, J. W. A ‘compartmental’ borromean weave coordination polymer exhibiting saturated hydrogen bonding to anions and water cluster inclusion. Angew. Chem. Int. Ed. 47, 5761–5764 (2008).

    CAS  Google Scholar 

  25. 25.

    Luan, X. J. et al. An investigation of the self-assembly of neutral, interlaced, triple-stranded molecular braids. Chem. Eur. J. 12, 6281–6289 (2006).

    CAS  Google Scholar 

  26. 26.

    Ashley, C. W. The Ashley Book of Knots 471–510 (Doubleday, New York,1944).

  27. 27.

    Danon, J. J. et al. Braiding a molecular knot with eight crossings. Science 355, 159–162 (2017).

    CAS  Google Scholar 

  28. 28.

    Sułkowska, J. I. et al. Knotting pathways in proteins. Biochem. Soc. Trans. 41, 523–527 (2013).

    Google Scholar 

  29. 29.

    Taylor, W. R. Protein knots and fold complexity: some new twists. Comput. Biol. Chem. 31, 151–162 (2007).

    CAS  Google Scholar 

  30. 30.

    Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003).

    CAS  Google Scholar 

  32. 32.

    Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    CAS  Google Scholar 

  33. 33.

    Meng, S. C., Tang, Y. Q., Yin, Y., Yin, X. L. & Xie, J. M. A theoretical study of molecular conformations and gelation ability of N,N′-dipyridyl urea compounds in ethanol solution: DFT calculations and MD simulations. RSC Adv. 3, 18115–18127 (2013).

    CAS  Google Scholar 

  34. 34.

    van Esch, J., DeFeyter, S., Kellogg, R. M., DeSchryver, F. & Feringa, B. L. Self-assembly of bisurea compounds in organic solvents and on solid substrates. Chem. Eur. J. 3, 1238–1243 (1997).

    Google Scholar 

  35. 35.

    Jones, J. E. et al. Length-dependent formation of transmembrane pores by 310-helical α-aminoisobutyric acid foldamers. J. Am. Chem. Soc. 138, 688–695 (2016).

    CAS  Google Scholar 

  36. 36.

    Piguet, C., Bernardinelli, G. & Hopfgartner, G. Helicates as versatile supramolecular complexes. Chem. Rev. 97, 2005–2062 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    King, P. J. S. et al. A modular self-assembly approach to functionalised β-sheet peptide hydrogel biomaterials. Soft Matter 12, 1915–1923 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Saiani, A. et al. Self-assembly and gelation properties of α-helix versus β-sheet forming peptides. Soft Matter 5, 193–202 (2009).

    CAS  Google Scholar 

  39. 39.

    Nagarkar, R. P., Hule, R. A., Pochan, D. J. & Schneider, J. P. De novo design of strand-swapped β-hairpin hydrogels. J. Am. Chem. Soc. 130, 4466–4474 (2008).

    CAS  Google Scholar 

  40. 40.

    Escuder, B., Rodríguez-Llansola, F. & Miravet, J. F. Supramolecular gels as active media for organic reactions and catalysis. New J. Chem. 34, 1044–1054 (2010).

    CAS  Google Scholar 

  41. 41.

    Steed, J. W. Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry. Chem. Soc. Rev. 39, 3686–3699 (2010).

    CAS  Google Scholar 

  42. 42.

    Foster, J. A. et al. Pharmaceutical polymorph control in a drug-mimetic supramolecular gel. Chem. Sci. 8, 78–84 (2017).

    CAS  Google Scholar 

  43. 43.

    Foster, J. A. et al. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth. Nat. Chem. 2, 1037–1043 (2010).

    CAS  Google Scholar 

  44. 44.

    Catrouillet, S. et al. Patchy supramolecular bottle-brushes formed by solution self-assembly of bis(urea)s and tris(urea)s decorated by two incompatible polymer arms. Langmuir 32, 8900–8908 (2016).

    CAS  Google Scholar 

  45. 45.

    Aisenbrey, C., Pendem, N., Guichard, G. & Bechinger, B. Solid state NMR studies of oligourea foldamers: interaction of 15N-labelled amphiphilic helices with oriented lipid membranes. Org. Biomol. Chem. 10, 1440–1447 (2012).

    CAS  Google Scholar 

  46. 46.

    Stanley, C. E. et al. Anion binding inhibition of the formation of a helical organogel. Chem. Commun. 2006, 3199–3201 (2006).

    Google Scholar 

  47. 47.

    de Loos, M. et al. Tripodal tris-urea derivatives as gelators for organic solvents. Eur. J. Org. Chem. 2000, 3675–3678 (2000).

    Google Scholar 

  48. 48.

    Artin, E. Theory of braids. Ann. Math. 48, 101–125 (1947).

    Google Scholar 

  49. 49.

    Coubrough, H. M., Jones, C. D., Yufit, D. S. & Steed, J. W. Gelation by histidine-derived ureas. Supramol. Chem. 30, 384–394 (2018).

    CAS  Google Scholar 

  50. 50.

    James, S. J., Perrin, A., Jones, C. D., Yufit, D. S. & Steed, J. W. Highly interlocked anion-bridged supramolecular networks from interrupted imidazole–urea gels. Chem. Commun. 50, 12851–12854 (2014).

    CAS  Google Scholar 

  51. 51.

    Dzwolak, W. Chirality and chiroptical properties of amyloid fibrils. Chirality 26, 580–587 (2014).

    CAS  Google Scholar 

  52. 52.

    Serpell, L. C. Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta 1502, 16–30 (2000).

    CAS  Google Scholar 

  53. 53.

    Duspara, P. A., Islam, M. S., Lough, A. J. & Batey, R. A. Synthesis and reactivity of N-alkyl carbamoylimidazoles: development of N-methyl carbamoylimidazole as a methyl isocyanate equivalent. J. Org. Chem. 77, 10362–10368 (2012).

    CAS  Google Scholar 

  54. 54.

    Meazza, L. et al. Halogen-bonding-triggered supramolecular gel formation. Nat. Chem. 5, 42–47 (2013).

    CAS  Google Scholar 

  55. 55.

    Piepenbrock, M. O. M., Clarke, N. & Steed, J. W. Shear induced gelation in a copper(ii) metallogel: new aspects of ion-tunable rheology and gel-reformation by external chemical stimuli. Soft Matter 6, 3541–3547 (2010).

    CAS  Google Scholar 

  56. 56.

    Todd, A. M., Anderson, K. M., Byrne, P., Goeta, A. E. & Steed, J. W. Helical or polar guest-dependent Z′ = 1.5 or Z′ = 2 forms of a sterically hindered bis(urea) clathrate. Cryst. Growth Des. 6, 1750–1752 (2006).

    CAS  Google Scholar 

  57. 57.

    Terech, P., Pasquier, D., Bordas, V. & Rossat, C. Rheological properties and structural correlations in molecular organogels. Langmuir 16, 4485–4494 (2000).

    CAS  Google Scholar 

  58. 58.

    Van der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Google Scholar 

  59. 59.

    Case, D. A. et al. The amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Pyrlin, S. V., Hine, N. D. M., Kleij, A. W. & Ramos, M. M. D. Self-assembly of bis-salphen compounds: from semiflexible chains to webs of nanorings. Soft Matter 14, 1181–1194 (2018).

    CAS  Google Scholar 

  61. 61.

    Eckes, K. M., Mu, X., Ruehle, M. A., Ren, P. & Suggs, L. J. β sheets not required: combined experimental and computational studies of self-assembly and gelation of the ester-containing analogue of an Fmoc-dipeptide hydrogelator. Langmuir 30, 5287–5296 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Forman, C. J., Fejer, S. N., Chakrabarti, D., Barker, P. D. & Wales, D. J. Local frustration determines molecular and macroscopic helix structures. J. Phys. Chem. B 117, 7918–7928 (2013).

    CAS  Google Scholar 

  63. 63.

    Huang, M.-J., Kapral, R., Mikhailov, A. S. & Chen, H.-Y. Coarse-grain model for lipid bilayer self-assembly and dynamics: multiparticle collision description of the solvent. J. Chem. Phys. 137, 055101 (2012).

    Google Scholar 

  64. 64.

    Jones, C. D., Kennedy, S. R., Walker, M., Yufit, D. S. & Steed, J. W. Scrolling of supramolecular lamellae in the hierarchical self-assembly of fibrous gels. Chem 3, 603–628 (2017).

    CAS  Google Scholar 

  65. 65.

    Núñez-Villanueva, D. et al. H-bond self-assembly: folding versus duplex formation. J. Am. Chem. Soc. 139, 6654–6662 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Fitzpatrick, A. W. P. et al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc. Natl Acad. Sci. USA 110, 5468 (2013).

    CAS  Google Scholar 

  67. 67.

    Velikov, K. P., Christova, C. G., Dullens, R. P. A. & van Blaaderen, A. Layer-by-layer growth of binary colloidal crystals. Science 296, 106–109 (2002).

    CAS  Google Scholar 

  68. 68.

    Baumgartner, R., Fu, H., Song, Z., Lin, Y. & Cheng, J. Cooperative polymerization of α-helices induced by macromolecular architecture. Nat. Chem. 9, 614–622 (2017).

    CAS  Google Scholar 

  69. 69.

    Müller, M. F., Ris, H. & Ferry, J. D. Electron microscopy of fine fibrin clots and fine and coarse fibrin films. J. Mol. Biol. 174, 369–384 (1984).

    Google Scholar 

  70. 70.

    Xu, F. et al. Self-assembly of left- and right-handed molecular screws. J. Am. Chem. Soc. 135, 18762–18765 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Sia, S. K. & Kim, P. S. A designed protein with packing between left-handed and right-handed helices. Biochemistry 40, 8981–8989 (2001).

    CAS  Google Scholar 

  72. 72.

    Morrow, S. M., Bissette, A. J. & Fletcher, S. P. Transmission of chirality through space and across length scales. Nat. Nanotechnol. 12, 410–419 (2017).

    CAS  Google Scholar 

  73. 73.

    Duan, P., Cao, H., Zhang, L. & Liu, M. Gelation induced supramolecular chirality: chirality transfer, amplification and application. Soft Matter 10, 5428–5448 (2014).

    CAS  Google Scholar 

  74. 74.

    Tomsett, M. et al. A tendril perversion in a helical oligomer: trapping and characterizing a mobile screw-sense reversal. Chem. Sci. 8, 3007–3018 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Dafforn, T. R. & Rodger, A. Linear dichroism of biomolecules: which way is up? Curr. Opin. Struct. Biol. 14, 541–546 (2004).

    CAS  Google Scholar 

  76. 76.

    Ribó, J. M., Hochberg, D., Crusats, J., El-Hachemi, Z. & Moyano, A. Spontaneous mirror symmetry breaking and origin of biological homochirality. J. R. Soc. Interface 14, 20170699 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Palmans Anja, R. A., Vekemans Jef, A. J. M., Havinga Edsko, E. & Meijer, E. W. Sergeants‐and‐soldiers principle in chiral columnar stacks of disc‐shaped molecules with C3 symmetry. Angew. Chem. Int. Ed. 36, 2648–2651 (2003).

    Google Scholar 

  78. 78.

    Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6, 188–195 (2014).

    CAS  Google Scholar 

  79. 79.

    Azeroual, S. et al. Mirror symmetry breaking and chiral amplification in foldamer-based supramolecular helical aggregates. Chem. Commun. 48, 2292–2294 (2012).

    CAS  Google Scholar 

  80. 80.

    Prins, L. J., Timmerman, P. & Reinhoudt, D. N. Amplification of chirality: the ‘sergeants and soldiers’ principle applied to dynamic hydrogen-bonded assemblies. J. Am. Chem. Soc. 123, 10153–10163 (2001).

    CAS  Google Scholar 

  81. 81.

    Langeveld-Voss, B. M. W., Waterval, R. J. M., Janssen, R. A. J. & Meijer, E. W. Principles of ‘majority rules’ and ‘sergeants and soldiers’ applied to the aggregation of optically active polythiophenes: Evidence for a multichain phenomenon. Macromolecules 32, 227–230 (1999).

    CAS  Google Scholar 

  82. 82.

    Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer’s ß-amyloid fibrils. Science 307, 262–265 (2005).

    Google Scholar 

  83. 83.

    Masel, J., Jansen, V. A. A. & Nowak, M. A. Quantifying the kinetic parameters of prion replication. Biophys. Chem. 77, 139–152 (1999).

    CAS  Google Scholar 

  84. 84.

    Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    CAS  PubMed  Google Scholar 

  85. 85.

    Hule, R. A., Nagarkar, R. P., Hammouda, B., Schneider, J. P. & Pochan, D. J. Dependence of self-assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules 42, 7137–7145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Ozbas, B., Kretsinger, J., Rajagopal, K., Schneider, J. P. & Pochan, D. J. Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37, 7331–7337 (2004).

    CAS  Google Scholar 

Download references


The authors thank the Engineering and Physical Sciences Research Council for funding this work via a Doctoral Training Studentship awarded to C.D.J. and the Leverhulme Trust for supporting K.E.H. via the Scientific Properties of Complex Knots (SPOCK) Research Programme Grant. The authors also thank L. Bowen, B. Mendis and S. Boothroyd for their assistance in obtaining electron microscopy images and rheological data.

Author information




C.D.J., H.T.D.S. and K.L. performed the synthesis of new compounds. R.L.T. and H.T.D.S. carried out the AFM measurements. K.E.H. and C.D.J. analysed the braid topologies. C.D.J. completed the remaining experimental studies. J.W.S. was responsible for overall project concept, direction and coordination. C.D.J. and J.W.S. wrote the manuscript.

Corresponding author

Correspondence to Jonathan W. Steed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Details of the synthesis, experimental procedures, compound characterization, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, powder X-ray diffraction, rheometry, braiding and chiral amplification information, a description of braid theory, molecular dynamics details and the MD topology file.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jones, C.D., Simmons, H.T.D., Horner, K.E. et al. Braiding, branching and chiral amplification of nanofibres in supramolecular gels. Nat. Chem. 11, 375–381 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing