A nucleophilic gold complex


Solid-state auride salts featuring the negatively charged Au ion are known to be stable in the presence of alkali metal counterions. While such electron-rich species might be expected to be nucleophilic (in the same manner as I, for example), their instability in solution means that this has not been verified experimentally. Here we report a two-coordinate gold complex (NON)AlAuPtBu3 (where NON is the chelating tridentate ligand 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) that features a strongly polarized bond, Auδ–Alδ+. This is synthesized by reaction of the potassium aluminyl compound [K{Al(NON)}]2 with tBu3PAuI. Computational studies of the complex, including quantum theory of atoms in molecules charge analysis, imply a charge at gold (−0.82) that is in line with the relative electronegativities of the two metals (Au: 2.54; Al: 1.61 on the Pauling scale). Consistently, the complex is found to act as a nucleophilic source of gold, reacting with diisopropylcarbodiimide and CO2 to give the Au–C bonded insertion products (NON)Al(X2C)AuPtBu3 (X = NiPr, 4; X = O, 5).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Selected examples of electron-rich gold complexes.
Fig. 2: Synthesis of the tri- and bimetallic gold/aluminium complexes 2 and 3.
Fig. 3: Molecular structures of 2 and 3 as determined by X-ray crystallography.
Fig. 4: Calculated effective atomic charges for the Al and Au centres in 2 and 3.
Fig. 5: Reductive insertion of diisopropylcarbodiimide and CO2 into the Al–Au bond of 3 and the molecular structure of 5 as determined by X-ray crystallography.
Fig. 6: Carbene-like description of 4 and 5.

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition nos. CCDC 1854973 (2), 1854972 (3), 1854971 (4) and 1854974 (5). Copies of the data can be obtained free of charge from www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the Article and its Supplementary Information, at the Oxford University Research Archive (https://ora.ox.ac.uk) and from the corresponding authors upon reasonable request.


  1. 1.

    Cotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. Advanced Inorganic Chemistry 6th edn (Wiley-Interscience, Hoboken, NJ, 1999).

  2. 2.

    Tolman, W. Activation of Small Molecules (Wiley-VCH, Weinheim, 2006).

  3. 3.

    Cornils, B. & Herrmann, W. Applied homogeneous catalysis with organometallic compounds (Wiley-VCH, Weinheim, 1996).

  4. 4.

    Bacci, M. et al. Transition Metal Complexes—Structures and Spectra (Springer, Berlin, 2014).

  5. 5.

    Hieber, W. & Leutert, F. Äthylendiamin-substituierte Eisencarboyle und eine neue Bildungsweise von Eisencarbonylwasserstoff (XI. Mitteil. über Metallcarbonyle). Chem. Ges. 64, 2832–2839 (1931).

    Google Scholar 

  6. 6.

    Elschenbroich, C. & Gerson, F. Metal π complexes of benzene derivatives. VI. Bis(η-benzene)vanadium(−I) anion. J. Am. Chem. Soc. 97, 3556–3557 (1975).

    CAS  Article  Google Scholar 

  7. 7.

    Ellis, J. E. Adventures with substances containing metals in negative oxidation states. Inorg. Chem. 45, 3167–3186 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    Jansen, M. The chemistry of gold as an anion. Chem. Soc. Rev. 37, 1826–1835 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Jansen, M. Effects of relativistic motion of electrons on the chemistry of gold and platinum. Solid State Sci. 7, 1464–1474 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    Andersen, T., Haugen, H. K. & Hotop, H. Binding energies in atomic negative Ions: III. J. Phys. Chem. Ref. Data 28, 1511–1533 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    Sommer, A. H. Alloys of gold with alkali metals. Nature 152, 215 (1943).

    CAS  Article  Google Scholar 

  12. 12.

    Spicer, W. E., Sommer, A. H. & White, J. G. Studies of the semiconducting properties of the compound CsAu. Phys. Rev. 115, 57–62 (1959).

    CAS  Article  Google Scholar 

  13. 13.

    Peer, W. J. & Lagowski, J. J. Metal-ammonia solutions. 11. Au, a solvated transition metal anion. J. Am. Chem. Soc. 100, 6260–6261 (1978).

    CAS  Article  Google Scholar 

  14. 14.

    Dietzel, P. D. C. & Jansen, M. Synthesis and crystal structure determination of tetramethylammonium auride. Chem. Commun. 621, 2208–2209 (2001).

    Article  Google Scholar 

  15. 15.

    Tsui, E. Y., Müller, P. & Sadighi, J. P. Reactions of a stable monomeric gold(i) hydride complex. Angew. Chem. Int. Ed. 47, 8937–8940 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Schmidbaur, H. & Dash, K. C. Compounds of gold in unusual oxidation states. Adv. Inorg. Chem. 25, 239–266 (1982).

    CAS  Article  Google Scholar 

  17. 17.

    Mézailles, N. et al. Gold(i) and gold(0) complexes of phosphinine‐based macrocycles. Angew. Chem. Int. Ed. 38, 3194–3197 (1999).

    Article  Google Scholar 

  18. 18.

    McIntosh, D. & Ozin, G. A. Synthesis of binary gold carbonyls, Au(CO)n (n = 1 or 2). Spectroscopic evidence for isocarbonyl(carbonyl)gold, a linkage isomer of bis(carbonyl)gold. Inorg. Chem. 16, 51–59 (1977).

    CAS  Article  Google Scholar 

  19. 19.

    Weinberger, D. S. et al. Isolation of neutral mono‐ and dinuclear gold complexes of cyclic (alkyl)(amino)carbenes. Angew. Chem. Int. Ed. 52, 8964–8967 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Taylor, J. W., McSkimming, A., Moret, M.-E. & Harman, W. H. A molecular boroauride: a donor–acceptor complex of anionic gold. Angew. Chem. Int. Ed. 56, 10413–10417 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Boese, A. D., Schneider, H., Glöß, A. N. & Weber, J. M. The infrared spectrum of Au·CO2. J. Chem. Phys. 122, 154301–154307 (2005).

    Article  Google Scholar 

  22. 22.

    Segawa, Y., Yamashita, M. & Nozaki, K. Boryllithium: isolation, characterization, and reactivity as a boryl anion. Science 314, 113–115 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    Weber, L. 1,3,2‐Diazaborolyl anions—from laboratory curiosities to versatile reagents in synthesis. Eur. J. Inorg. Chem. 2017, 3461–3488 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Segawa, Y., Yamashita, M. & Nozaki, K. Boryl anion attacks transition‐metal chlorides to form boryl complexes: syntheses, spectroscopic, and structural studies on group 11 borylmetal complexes. Angew. Chem. Int. Ed. 46, 6710–6713 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    Lu, W., Hu, H., Li, Y., Ganguly, R. & Kinjo, R. Isolation of 1,2,4,3-triazaborol-3-yl-metal (Li, Mg, Al, Au, Zn, Sb, Bi) derivatives and reactivity toward CO and isonitriles. J. Am. Chem. Soc. 138, 6650–6661 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Emsley, J. The Elements 2nd edn (Oxford Univ. Press, Oxford, 1995).

  27. 27.

    Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Wegner, H. A. & Auzias, M. Gold for C–C coupling reactions: a Swiss‐army‐knife catalyst? Angew. Chem. Int. Ed. 50, 8236–8247 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Mitoraj, M. & Michalak, A. Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J. Mol. Model. 13, 347–355 (2007).

    CAS  Article  Google Scholar 

  30. 30.

    Michalak, A., Mitoraj, M. & Ziegler, T. Bond orbitals from chemical valence theory. J. Phys. Chem. A 112, 1933–1939 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    Radoń, M. On the properties of natural orbitals for chemical valence. Theor. Chem. Acc. 120, 337–339 (2008).

    Article  Google Scholar 

  32. 32.

    Gabbaï, F. P., Schier, A., Riede, J. & Schmidbaur, H. Different pathways of the reaction of InCl with Ph3PAuCl: isolation of the first mixed-valent mixed-metal gold/indium cluster. Inorg. Chem. 34, 3855–3856 (1995).

    Article  Google Scholar 

  33. 33.

    Puls, A. et al. A novel concept for the synthesis of multiply doped gold clusters [(M@AunM′m)Lk]q+. Angew. Chem. Int. Ed. 53, 4327–4331 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Cordero, B. et al. Covalent radii revisited. Dalton Trans. 2008, 2832–2838 (2008).

    Article  Google Scholar 

  35. 35.

    Kempter, A., Gemel, C. & Fischer, R. A. Insertion of Ga(DDP) into the Au−Cl bond of (PPh3)AuCl: a first structurally characterized Au−Ga bond. Inorg. Chem. 44, 163–165 (2005).

    CAS  Article  Google Scholar 

  36. 36.

    Green, S. P., Jones, C., Mills, D. P. & Stasch, A. Group 9 and 11 metal(i) gallyl complexes stabilized by N-heterocyclic carbene coordination: first structural characterization of Ga–M (M–Cu or Ag) bonds. Organometallics 26, 3424–3430 (2007).

    CAS  Article  Google Scholar 

  37. 37.

    Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991).

    CAS  Article  Google Scholar 

  38. 38.

    Bader, R. F. W. Atoms in Molecules. A Quantum Theory (Oxford Univ. Press, Oxford, 1994).

  39. 39.

    Pinkes, J. R., Steffey, B. D., Vites, J. C. & Cutler, A. R. Carbon dioxide insertion into the iron–zirconium and ruthenium–zirconium bonds of the heterobimetallic complexes Cp(CO)2M–Zr(Cl)Cp2: direct production of the μ-η 1(C) 2(O,O’)-CO2 compounds Cp(CO)2M–CO2–Zr(Cl)Cp2. Organometallics 13, 21–23 (1994).

    CAS  Article  Google Scholar 

  40. 40.

    Li, J., Hermann, M., Frenking, G. & Jones, C. The facile reduction of carbon dioxide to carbon monoxide with an amido‐digermyne. Angew. Chem. Int. Ed. 51, 8611–8614 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Komiya, S., Sone, T., Ozaki, S., Ishikawa, M. & Kasuga, N. Synthesis, structure and properties of dimethyl(alkoxycarbonyl)gold(iii) complexes having a triphenylphosphine ligand. J. Organomet. Chem. 428, 303–313 (1992).

    CAS  Article  Google Scholar 

  42. 42.

    Gaillard, S., Nun, P., Slawin, A. M. Z. & Nolan, S. P. Expeditious synthesis of [Au(NHC)(L)]+ (NHC=N-heterocyclic carbene; L=phosphine or NHC) complexes. Organometallics 29, 5402–5408 (2010).

    CAS  Article  Google Scholar 

Download references


This work was supported by the SCG Oxford Centre of Excellence. P.V. thanks the Magnus Ehrnrooth, Finnish Cultural and Emil Aaltonen Foundations for postdoctoral funding. Computational resources were provided by CSC – IT Center for Science, Finland, the Finnish Grid and Cloud Infrastructure (persistent identifier nrn:nbn:fi:research-infras-2016072533) and the University of Jyväskylä.

Author information




J.H. carried out the synthetic and reaction studies. A.M. and P.V. carried out the computational analyses. J.H. conducted the crystallographic studies. J.H., J.M.G. and S.A. wrote the manuscript. J.M.G. and S.A. managed the project.

Corresponding authors

Correspondence to Jose M. Goicoechea or Simon Aldridge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General considerations and starting material preparations; synthetic, spectroscopic and analytical data; 1H-NMR spectra; X-ray crystallographic studies; computational studies

Crystallographic data

CIF for compound 2; CCDC reference: 1854973

Crystallographic data

CIF for compound 3; CCDC reference: 1854972

Crystallographic data

CIF for compound 4; CCDC reference: 1854971

Crystallographic data

CIF for compound 5; CCDC reference: 1854974

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hicks, J., Mansikkamäki, A., Vasko, P. et al. A nucleophilic gold complex. Nature Chem 11, 237–241 (2019). https://doi.org/10.1038/s41557-018-0198-1

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing