Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water

Abstract

Nature uses organic molecules for light harvesting and photosynthesis, but most man-made water splitting catalysts are inorganic semiconductors. Organic photocatalysts, while attractive because of their synthetic tunability, tend to have low quantum efficiencies for water splitting. Here we present a crystalline covalent organic framework (COF) based on a benzo-bis(benzothiophene sulfone) moiety that shows a much higher activity for photochemical hydrogen evolution than its amorphous or semicrystalline counterparts. The COF is stable under long-term visible irradiation and shows steady photochemical hydrogen evolution with a sacrificial electron donor for at least 50 hours. We attribute the high quantum efficiency of fused-sulfone-COF to its crystallinity, its strong visible light absorption, and its wettable, hydrophilic 3.2 nm mesopores. These pores allow the framework to be dye-sensitized, leading to a further 61% enhancement in the hydrogen evolution rate up to 16.3 mmol g−1 h−1. The COF also retained its photocatalytic activity when cast as a thin film onto a support.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structures of the organic photocatalysts studied here.
Fig. 2: Crystal structures of FS-COF and S-COF.
Fig. 3: Evidence for ordered, wettable mesopores in FS-COF.
Fig. 4: Optical properties, HERs and excited-state lifetimes for the photocatalysts.
Fig. 5: Electronic structure calculations provide insights into the photocatalytic water splitting activities of the COFs.
Fig. 6: Dye sensitization of FS-COF and hydrogen evolution from an FS-COF film.

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 1818058 (fused sulfone diamine, FSA) and 1818059 (sulfone diamine, SA). Copies of the data can be obtained free of charge from www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the Article and its Supplementary Information and/or from the corresponding authors upon reasonable request.

References

  1. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  2. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  CAS  Google Scholar 

  3. Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    Article  CAS  Google Scholar 

  4. Chen, S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).

    Article  CAS  Google Scholar 

  5. Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).

    Article  CAS  Google Scholar 

  6. Sprick, R. S. et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 137, 3265–3270 (2015).

    Article  CAS  Google Scholar 

  7. Zhang, G., Lan, Z.-A. & Wang, X. Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55, 2–18 (2016).

    Article  Google Scholar 

  8. Yanagida, S., Kabumoto, A., Mizumoto, K., Pac, C. & Yoshino, K. Poly(para)phenylene-catalyzed photoreduction of water to hydrogen. Chem. Commun. 8, 474–475 (1985).

    Article  Google Scholar 

  9. Shibata, T. et al. Novel visible-light-driven photocatalyst. Poly(p-phenylene)-catalyzed photoreductions of water, carbonyl compounds, and olefins. J. Phys. Chem. 94, 2068–2076 (1990).

    Article  CAS  Google Scholar 

  10. Schwinghammer, K. et al. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 136, 1730–1733 (2014).

    Article  CAS  Google Scholar 

  11. Schwab, M. G. et al. Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chem. Commun. 46, 8932 (2010).

    Article  CAS  Google Scholar 

  12. Yang, C. et al. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew. Chem. Int. Ed. 55, 9202–9206 (2016).

    Article  CAS  Google Scholar 

  13. Li, L. et al. Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J. Am. Chem. Soc. 138, 7681–7686 (2016).

    Article  CAS  Google Scholar 

  14. Woods, D. J., Sprick, R. S., Smith, C. L., Cowan, A. J. & Cooper, A. I. A solution-processable polymer photocatalyst for hydrogen evolution from water. Adv. Energy Mater. 7, 1700479 (2017).

    Article  Google Scholar 

  15. Sprick, R. S. et al. Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water. Chem. Commun. 52, 10008–10011 (2016).

    Article  CAS  Google Scholar 

  16. Sprick, R. S. et al. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew. Chem. Int. Ed. 55, 1792–1796 (2016).

    Article  CAS  Google Scholar 

  17. Wang, k et al. Covalent triazine frameworks via a low temperature polycondensation approach. Angew. Chem. Int. Ed. 56, 14337–14341 (2017).

    Article  Google Scholar 

  18. Meier, C. B. et al. Structure–property relationships for covalent triazine-based frameworks: the effect of spacer length on photocatalytic hydrogen evolution from water. Polymer 126, 283–290 (2017).

    Article  CAS  Google Scholar 

  19. Bi, J. et al. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromol. Rapid Commun. 36, 1799–1805 (2015).

    Article  CAS  Google Scholar 

  20. Zhang, G., Lan, Z.-A., Lin, L., Lin, S. & Wang, X. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7, 3062–3066 (2016).

    Article  CAS  Google Scholar 

  21. Wang, L. et al. Conjugated microporous polymer nanosheets for overall water splitting using visible light. Adv. Mater. 29, 1702428 (2017).

    Article  Google Scholar 

  22. Zhang, G. et al. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity. Angew. Chem. Int. Ed. 56, 13445–13449 (2017).

    Article  CAS  Google Scholar 

  23. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  Google Scholar 

  24. Ockwig, N. W., Cote, A. P., Keeffe, M. O., Matzger, A. J. & Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1171 (2005).

    Article  Google Scholar 

  25. El-Kaderi, H. M. et al. Designed synthesis of 3D covalent organic frameworks. Science 316, 268–272 (2007).

    Article  CAS  Google Scholar 

  26. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article  Google Scholar 

  27. Spitler, E. L. et al. Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew. Chem. Int. Ed. 51, 2623–2627 (2012).

    Article  CAS  Google Scholar 

  28. Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2, 672–677 (2010).

    Article  CAS  Google Scholar 

  29. Kandambeth, S. et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012).

    Article  CAS  Google Scholar 

  30. Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).

    Article  CAS  Google Scholar 

  31. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    Article  CAS  Google Scholar 

  32. Thote, J. et al. A covalent organic framework–cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chem. Eur. J. 20, 15961–15965 (2014).

    Article  CAS  Google Scholar 

  33. Zhou, J. et al. A (001) dominated conjugated polymer with high-performance of hydrogen evolution under solar light irradiation. Chem. Commun. 53, 10536–10539 (2017).

    Article  CAS  Google Scholar 

  34. Stegbauer, L., Schwinghammer, K. & Lotsch, B. V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 5, 2789–2793 (2014).

    Article  CAS  Google Scholar 

  35. Vyas, V. S. et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat. Commun. 6, 8508 (2015).

    Article  CAS  Google Scholar 

  36. Haase, F. et al. Structure–property–activity relationships in a pyridine containing azine-linked covalent organic framework for photocatalytic hydrogen evolution. Faraday Discuss. 162, 165–169 (2017).

    Google Scholar 

  37. Pachfule, P. et al. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 140, 1423–1427 (2018).

    Article  CAS  Google Scholar 

  38. Banerjee, T. et al. Single site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime co-catalysts. J. Am. Chem. Soc. 139, 16228–16234 (2017).

    Article  CAS  Google Scholar 

  39. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  CAS  Google Scholar 

  40. Sick, T. et al. Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting. J. Am. Chem. Soc. 140, 2085–2092 (2018).

    Article  CAS  Google Scholar 

  41. Zhu, Y. & Zhang, W. Reversible tuning of pore size and CO2 adsorption in azobenzene functionalized porous organic polymers. Chem. Sci. 5, 4957–4961 (2014).

    Article  CAS  Google Scholar 

  42. Kruczynski, L. et al. Porous titania glass as a photocatalyst for hydrogen production from water. Nature 291, 399–401 (1981).

    Article  CAS  Google Scholar 

  43. Wagner, F. T. & Somorjai, G. A. Photocatalytic hydrogen production from water on Pt-free SrTiO3 in alkali hydroxide solutions. Nature 285, 559–560 (1980).

    Article  CAS  Google Scholar 

  44. Corp, K. L., Schlenker, C. W., Corp, K. L. & Schlenker, C. W. Ultrafast spectroscopy reveals electron transfer cascade that improves hydrogen evolution with carbon nitride photocatalysts. J. Am. Chem. Soc. 139, 7904–7912 (2017).

    Article  CAS  Google Scholar 

  45. Kroeze, J. E., Savenije, T. J., Vermeulen, M. J. W. & Warman, J. M. Contactless determination of the photoconductivity action spectrum, exciton diffusion length, and charge separation efficiency in polythiophene-sensitized TiO2 bilayers. J. Phys. Chem. B 107, 7696–7705 (2003).

    Article  CAS  Google Scholar 

  46. Bruno, A., Reynolds, L. X., Dyer-Smith, C., Nelson, J. & Haque, S. A. Determining the exciton diffusion length in a polyfluorene from ultrafast fluorescence measurements of polymer/fullerene blend films. J. Phys. Chem. C 117, 19832–19838 (2013).

    Article  CAS  Google Scholar 

  47. Shaw, P. E., Ruseckas, A. & Samuel, I. D. W. Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 20, 3516–3520 (2008).

    Article  CAS  Google Scholar 

  48. Tezuka, Y., Fukushima, A., Matsui, S. & Imai, K. Surface studies on poly(vinyl alcohol)-poly(dimethylsiloxane) graft copolymers. J. Colloid Interface Sci. 114, 16–25 (1986).

    Article  CAS  Google Scholar 

  49. Biswal, B. P. et al. Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption. J. Mater. Chem. A 3, 23664–23669 (2015).

    Article  CAS  Google Scholar 

  50. Guiglion, P., Butchosa, C. & Zwijnenburg, M. A. Polymer photocatalysts for water splitting: insights from computational modeling. Macromol. Chem. Phys. 217, 344–353 (2016).

    Article  CAS  Google Scholar 

  51. Guiglion, P., Monti, A. & Zwijnenburg, M. A. Validating a density functional theory approach for predicting the redox potentials associated with charge carriers and excitons in polymeric photocatalysts. J. Phys. Chem. C 121, 1498–1506 (2017).

    Article  CAS  Google Scholar 

  52. Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).

    Article  CAS  Google Scholar 

  53. Willkomm, J. et al. Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production. Chem. Soc. Rev. 45, 9–23 (2016).

    Article  CAS  Google Scholar 

  54. Abe, R., Sayama, K., Domen, K. & Arakawa, H. A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3 /I shuttle redox mediator. Chem. Phys. Lett. 344, 339–344 (2001).

    Article  CAS  Google Scholar 

  55. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    Article  CAS  Google Scholar 

  56. Tada, H., Mitsui, T., Kiyonaga, T., Akita, T. & Tanaka, K. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat. Mater. 5, 782–786 (2006).

    Article  CAS  Google Scholar 

  57. Goto, Y. et al. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509–520 (2018).

    Article  CAS  Google Scholar 

  58. Schröder, M. et al. Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation. Energy Technol. 3, 1014–1017 (2015).

    Article  Google Scholar 

  59. Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, aaa8075 (2015).

    Article  Google Scholar 

  60. Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018).

    Article  CAS  Google Scholar 

  61. Teets, T. S. & Nocera, D. G. Photocatalytic hydrogen production. Chem. Commun. 47, 9268–9274 (2011).

    Article  CAS  Google Scholar 

  62. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).

    Article  CAS  Google Scholar 

  63. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  64. Stephens, P., Devlin, F., Chabalowski, C. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  65. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  Google Scholar 

  66. Frisch, M. J. et al. Gaussian 16 revision A.03 (Gaussian, 2016).

  67. Hirata, S. & Head-Gordon, M. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 314, 291–299 (1999).

    Article  CAS  Google Scholar 

  68. Scalmani, G. & Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132, 114110 (2010).

    Article  Google Scholar 

  69. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  Google Scholar 

  70. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  71. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  72. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  73. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32, 1456 (2011).

    Article  CAS  Google Scholar 

  74. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  75. Heyd, J. & Scuseria, G. E. Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 121, 1187–1192 (2004).

    Article  CAS  Google Scholar 

  76. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Erratum: ‘Hybrid functionals based on a screened Coulomb potential’. J. Chem. Phys. 124, 219906 (2006).

    Article  Google Scholar 

  77. Butler, K. T., Hendon, C. H. & Walsh, A. Electronic chemical potentials of porous metal–organic frameworks. J. Am. Chem. Soc. 136, 2703–2706 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) (EP/N004884/1), the European Union’s Seventh Framework Programme through grant agreement nos. 321156 (ERC-AG-PE5-ROBOT) and 692685, and the Leverhulme Trust via the Leverhulme Research Centre for Functional Materials Design. X.W. thanks the China Scholarship Council for a PhD studentship. Y.W. and W.-H.Z. acknowledge financial support from the NSFC for Creative Research Groups (21421004) and Key Project (21636002), NSFC/China and a Shanghai Oriental Scholarship. The authors thank M. Bilton for help with HR-TEM, F. McBride for help with AFM, and G.-H. Ning and H. Niu for useful discussions. The authors acknowledge the Diamond Light Source for access to beamlines I19 (MT15777) and I11 (EE12336), the ARCHER UK National Supercomputing Service, access provided via a Programme Grant (EP/N004884/1) and the EPSRC funded UK Materials Chemistry Consortium (EP/L000202/1), and the use of the facilities of the N8 HPC Centre of Excellence, provided and funded by the N8 Research Partnership and EPSRC (EP/K000225/1).

Author information

Authors and Affiliations

Authors

Contributions

A.I.C. and X.W. conceived the project. X.W. synthesized the COFs and performed the characterization and photocatalysis experiments. L.C. and M.A.Z. conceived the modelling strategy and performed the calculations. S.Y.C. carried out PXRD analyses. M.A.L. carried out single-crystal X-ray structure analysis. R.S.S. performed the TCSPC experiments and co-supervised, with A.I.C., the work on COF synthesis, characterization and photocatalysis. Y.Y. collected the water sorption isotherms. R.C., X.W. and L.C. interpreted the gas sorption isotherms. Y.W. and W.-H.Z. synthesized and characterized the WS5F dye. All authors interpreted the data and contributed to preparation of the manuscript.

Corresponding author

Correspondence to Andrew I. Cooper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Supplementary Characterization, Supplementary Figures 1–95; Supplementary References 1–15

Crystallographic data

CIF for SA compound; CCDC reference: 1818059

Crystallographic data

CIF for FSA compound; CCDC reference: 1818058

Computational data

Data from computational analysis of COF models and cluster models

Video

Video showing hydrogen evolution from a FS-COF thin film

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, L., Chong, S.Y. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chem 10, 1180–1189 (2018). https://doi.org/10.1038/s41557-018-0141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0141-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing