Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The energy-transfer-enabled biocompatible disulfide–ene reaction


Sulfur-containing molecules participate in many essential biological processes. Of utmost importance is the methylthioether moiety, present in the proteinogenic amino acid methionine and installed in tRNA by radical-S-adenosylmethionine methylthiotransferases. Although the thiol–ene reaction for carbon–sulfur bond formation has found widespread applications in materials or medicinal science, a biocompatible chemo- and regioselective hydrothiolation of unactivated alkenes and alkynes remains elusive. Here, we describe the design of a general chemoselective anti-Markovnikov hydroalkyl/aryl thiolation of alkenes and alkynes—also allowing the biologically important hydromethylthiolation—by triplet–triplet energy transfer activation of disulfides. This fast disulfide–ene reaction shows extraordinary functional group tolerance and biocompatibility. Transient absorption spectroscopy was used to study the sensitization process in detail. The hereby gained mechanistic insights were successfully employed for optimization of the catalytic system. This photosensitized transformation should stimulate bioimaging applications and carbon–sulfur bond-forming late-stage functionalization chemistry, especially in the context of metabolic labelling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Chemoselective anti-Markovnikov hydrothiolation of alkenes—allowing the biologically important hydromethylthiolation—enabled by triplet–triplet photosensitization of disulfides.
Fig. 2: Hypothesis-driven luminescence screening and reaction profile of the chemoselective anti-Markovnikov disulfide–ene reaction.
Fig. 3: Scope of the disulfide–ene hydrothiolation of alkenes and alkynes.
Fig. 4: Proposed reaction mechanism of the photosensitized disulfide–ene reaction derived from diverse mechanistic studies.
Fig. 5: Improvement of the photocatalytic system based on mechanistic investigation, access to sulfoxides and sulfones by stepwise oxidation of thioethers and biocompatibility screening of the disulfide–ene reaction.


  1. 1.

    Trost, B. M. Selectivity: a key to synthetic efficiency. Science 219, 245–250 (1983).

    CAS  Article  Google Scholar 

  2. 2.

    Wender, P. A. & Miller, B. L. Synthesis at the molecular frontier. Nature 460, 197–201 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Takahashi, N. et al. Reactive sulfur species regulate tRNA methythiolation and contribute to insulin secretion. Nucleic Acids Res. 45, 435–445 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Kowalak, J. A. & Walsh, K. A. β-methylthio-aspartic acid: identification of a novel posttranslational modification in ribosomal protein S12 from Escherichia coli. Protein Sci. 5, 1625–1632 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    Forouhar, F. et al. Two Fe–S cluster catalyse sulfur insertion by radical-SAM methylthiotransferases. Nat. Chem. Biol. 9, 333–338 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Stubbe, J. & van der Donk, W. A. Protein radicals in enzyme catalysis. Chem. Rev. 98, 705–762 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    Dunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. Enzymatic carbon–sulfur bond formation in natural product biosynthesis. Chem. Rev. 117, 5521–5577 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Kolberg, M., Strand, K. R., Graff, P. & Andersson, K. K. Structure, function, and mechanism of ribonucleotide reductases. Biochim. Biophys. Acta 1699, 1–34 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    Fraústo da Silva, J. J. R. & Williams, R. J. P. The Biological Chemistry of the Elements (Oxford Univ. Press: New York, NY, 2011).

  10. 10.

    Damani, L. A. Sulphur-Containing Drugs and Related Organic Compounds (Wiley: Chichester, 1989).

  11. 11.

    Dénès, F., Pichowicz, M., Povie, G. & Renaud, P. Thiyl radicals in organic synthesis. Chem. Rev. 114, 2587–2693 (2014).

    Article  Google Scholar 

  12. 12.

    Posner, T. Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe. Ber. Dtsch. Chem. Ges. 38, 646–657 (1905).

    Article  Google Scholar 

  13. 13.

    Hoyle, C. E. & Bowman, C. N. Thiol–ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Stenzel, M. H. Bioconjugation using thiols: old chemistry rediscovered to connect polymers with nature’s building blocks. ACS Macro Lett. 2, 14–18 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    van Dijk, M., Rijkers, D. T. S., Liskamp, R. M. J., van Nostrum, C. F. & Hennink, W. E. Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjug. Chem. 20, 2001–2016 (2009).

    Article  Google Scholar 

  16. 16.

    Huynh, V. T., Chen, G., de Souza, P. & Stenzel, M. H. Thiol–yne and thiol–ene ‘click’ chemistry as a tool for a variety of platinum drug delivery carriers, from statistical copolymers to crosslinked micelles. Biomacromolecules 12, 1738–1751 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    Lowe, A. B. Thiol–ene ‘click’ reactions and recent applications in polymer and materials synthesis. Polym. Chem. 1, 17–36 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    Tyson, E. L., Ament, M. S. & Yoon, T. P. Transition metal photoredox catalysis of radical thiol–ene reactions. J. Org. Chem. 78, 2046–2050 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Tyson, E. L., Niemeyer, Z. L. & Yoon, T. P. Redox mediators in visible light photocatalysis: photocatalytic radical thiol–ene additions. J. Org. Chem. 79, 1427–1436 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Keylor, M. H., Park, J. E., Wallentin, C.-J. & Stephenson, C. R. J. Photocatalytic initiation of thiol–ene reactions: synthesis of thiomorpholin-3-ones. Tetrahedron 70, 4264–4269 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Chen, Y., Kamlet, A. S., Steinman, J. B. & Liu, D. R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nat. Chem. 3, 146–153 (2011).

    Article  Google Scholar 

  22. 22.

    Huang, H., Zhang, G., Gong, L., Zhang, S. & Chen, Y. Visible-light-induced chemoselective deboronative alkynylation under biomolecule-compatible conditions. J. Am. Chem. Soc. 136, 2280–2283 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Nair, D. P. et al. The thiol–Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem. Mater. 26, 724–744 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds (CRC Press: Boca Raton, FL, 2003).

  25. 25.

    Zhao, J., Wu, W., Sun, J. & Guo, S. Triplet photosensitizers: from molecular design to applications. Chem. Soc. Rev. 42, 5323–5351 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Atta, M. et al. The methylthiolation reaction mediated by the radical-SAM enzymes. Biochim. Biophys. Acta 1824, 1223–1230 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Stillwell, W. G. Methylthiolation: a new pathway of drug metabolism. Trends Pharmacol. Sci. 2, 250–252 (1981).

    CAS  Article  Google Scholar 

  28. 28.

    Ciamician, G. The photochemistry of the future. Science 36, 385–394 (1912).

    CAS  Article  Google Scholar 

  29. 29.

    Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Metternich, J. B. & Gilmour, R. Photocatalytic E→Z isomerization of alkenes. Synlett 27, 2541–2552 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Lu, Z. & Yoon, T. P. Visible light photocatalysis of [2+2] styrene cycloadditions by energy transfer. Angew. Chem. Int. Ed. 51, 10329–10332 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Blum, T. R., Miller, Z. D., Bates, D. M., Guzei, I. A. & Yoon, T. P. Enantioselective photochemistry through Lewis acid-catalyzed triplet energy transfer. Science 354, 1391–1395 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K. & MacMillan, D. W. C. Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science 355, 380–385 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Hopkinson, M. N., Gómez-Suárez, A., Teders, M., Sahoo, B. & Glorius, F. Accelerated discovery in photocatalysis using a mechanism-based screening method. Angew. Chem. Int. Ed. 55, 4361–4366 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Teders, M., Gómez-Suárez, A., Pitzer, L., Hopkinson, M. N. & Glorius, F. Diverse visible-light-promoted functionalizations of benzotriazoles inspired by mechanism-based luminescence screening. Angew. Chem. Int. Ed. 56, 902–906 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Benati, L., Montevecchi, P. C. & Spagnolo, P. Free-radical reactions of benzenethiol and diphenyl disulphide with alkynes. Chemical reactivity of intermediate 2-(phenylthio)vinyl radicals. J. Chem. Soc. Perkin Trans. 1, 2103–2109 (1991).

    Article  Google Scholar 

  39. 39.

    Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem. 5, 597–601 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    Gensch, T., Teders, M. & Glorius, F. Approach to comparing the functional group tolerance of reactions. J. Org. Chem. 82, 9154–9159 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Snyder, J. J., Tise, F. P., Davis, R. D. & Kropp, P. J. Photochemistry of alkenes. 7. EZ isomerization of alkenes sensitized with benzene and derivatives. J. Org. Chem. 46, 3609–3611 (1981).

    CAS  Article  Google Scholar 

  42. 42.

    Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005).

    CAS  Article  Google Scholar 

  43. 43.

    Murov, S. L., Carmichael, I. & Hug, G. L. Handbook of Photochemistry 2nd edition (Marcel Dekker, New York, 1993).

  44. 44.

    Guldi, D. M., Neta, P. & Asmus, K.-D. Electron-transfer reactions between C60 and radical ions of metaloporphyrins and arenes. J. Phys. Chem. 98, 4617–4621 (1994).

    CAS  Article  Google Scholar 

  45. 45.

    Mojr, V. et al. Tailoring flavins for visible light photocatalysis: organocatalytic [2+2] cycloadditions mediated by a flavin derivative and visible light. Chem. Commun. 51, 12036–12039 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Feng, M., Tang, B., Liang, S. H. & Jiang, X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr. Top. Med. Chem. 16, 1200–1216 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Devendar, P. & Yang, G. F. Sulfur-containing agrochemicals. Top. Curr. Chem. 375, 82 (2017).

    Article  Google Scholar 

  48. 48.

    Shieh, P. & Bertozzi, C. R. Design strategies for bioorthogonal smart probes. Org. Biomol. Chem. 12, 9307–9320 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    CAS  Article  Google Scholar 

Download references


The authors thank K. Gottschalk, L. Roling, S. Hüwel, W. Dörner and S. Wulff for experimental and technical assistance and R. Honeker, L. Candish and Z. Nairoukh for helpful discussions (all WWU Münster). This work was supported by the Deutsche Forschungsgemeinschaft (Leibniz Award to F.G. and RE2796/6-1 to A.R.) and by the Fonds der Chemischen Industrie (doctoral fellowship to L.A. and Dozentenpreis to A.R.). M.T. thanks SusChemSys 2.0 for general support.

Author information




M.T., F.S.-K., A.G.-S., R.K. and F.G. designed, performed and analysed the catalytic and mechanistic experiments. C.H., A.K. and D.G. designed, performed and analysed transient absorption data and related spectroscopic mechanism studies. L.A. and M.T. designed and performed the biocompatibility screening experiments. M.T., C.H., L.A., F.S.-K., A.R., D.G. and F.G. prepared the manuscript, with contributions from all authors.

Corresponding authors

Correspondence to Dirk Guldi or Frank Glorius.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Details on chemical compound information and characterization data, experimental details, spectra and mechanistic experiments

Reporting summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teders, M., Henkel, C., Anhäuser, L. et al. The energy-transfer-enabled biocompatible disulfide–ene reaction. Nature Chem 10, 981–988 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing