Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Bio-additive-based screening: toward evaluation of the biocompatibility of chemical reactions

Abstract

A requirement for biochemical labeling strategies is a pronounced biocompatibility of the underlying reaction methodology. This protocol enables a systematic evaluation of the biocompatibility of (new) reaction methodologies that are potentially attractive for biochemical applications. The cellular environment for in vitro and in vivo applications is mimicked by the one-by-one addition of diverse bio-additives to the reaction. The influence of the bio-additives on the product yield, termed bio-robustness, is quantified by gas chromatography (GC) or NMR techniques, whereas qualitative analysis of the level of biomolecule preservation by ultra-HPLC–mass spectrometry (UHPLC–MS) or gel electrophoresis enables monitoring of the effects of the reaction conditions on the biomolecule stability, e.g., bio-additive modification or degradation. The 22 chosen bio-additives and the required controls can be completely evaluated within 5–7 working days, depending on reaction time, instrument and the general equipment availability of the lab. We illustrate this protocol by assessing the reaction biocompatibility of a copper-catalyzed N-arylation of sulfonamides. The hereby obtained results are compared to those for a reaction that is characterized by high reaction biocompatibility: the energy-transfer-enabled disulfide–ene reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual sketch of bio-additive-based reaction biocompatibility screening.
Fig. 2: Workflow of bio-additive-based reaction biocompatibility screening.
Fig. 3
Fig. 4
Fig. 5
Fig. 6: UHPLC–MS analysis of preservation of ATP as bio-additive (entry 14) in the copper-catalyzed N-arylation and comparison with untreated ATP as control.
Fig. 7: Analysis of ssDNA.
Fig. 8: Visualization of bio-robustness and biomolecule preservation.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its supplementary information, or from the corresponding authors upon reasonable request.

References

  1. Trost, B. M. Selectivity: a key to synthetic efficiency. Science 219, 245–250 (1983).

    Article  CAS  Google Scholar 

  2. Wender, P. A. & Miller, B. L. Synthesis at the molecular frontier. Nature 460, 197–201 (2009).

    Article  CAS  Google Scholar 

  3. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    Article  CAS  Google Scholar 

  4. Devaraj, N. K. The future of bioorthogonal chemistry. ACS Cent. Sci. 4, 952–959 (2018).

    Article  CAS  Google Scholar 

  5. Vert, M. et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 84, 377–410 (2012).

    Article  CAS  Google Scholar 

  6. Definition of biocompatibility. https://www.merriam-webster.com/dictionary/biocompatibility (2018).

  7. Marks, K. M. & Nolan, G. P. Chemical labeling strategies for cell biology. Nat. Methods 3, 591–596 (2006).

    Article  CAS  Google Scholar 

  8. Yang, M., Li, J. & Chen, P. R. Transition metal-mediated bioorthogonal protein chemistry in living cells. Chem. Soc. Rev. 43, 6511–6526 (2014).

    Article  CAS  Google Scholar 

  9. Christoffel, F. & Ward, T. R. Palladium-catalyzed heck cross-coupling reactions in water: a comprehensive review. Catal. Lett. 148, 489–511 (2018).

    Article  CAS  Google Scholar 

  10. Tsubokura, K. et al. In vivo gold complex catalysis within live mice. Angew. Chem. Int. Ed. 56, 3579–3584 (2017).

    Article  CAS  Google Scholar 

  11. Ngo, A. H., Bose, S. & Do, L. H. Intracellular chemistry: integrating molecular inorganic catalysts with living systems. Chem. Eur. J 24, 10584–10594 (2018).

    Article  CAS  Google Scholar 

  12. Chandrasekaran, K. S. & Rentmeister, A. Clicking a fish: click chemistry of different biomolecules in Danio rerio. Biochemistry, 58, 24–30.

  13. Williams, D. F. On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953 (2008).

    Article  CAS  Google Scholar 

  14. Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem 5, 597–601 (2013).

    Article  CAS  Google Scholar 

  15. Collins, K. D., Rühling, A. & Glorius, F. Application of a robustness screen for the evaluation of synthetic organic methodology. Nat. Protoc. 9, 1348–1353 (2014).

    Article  CAS  Google Scholar 

  16. Gensch, T., Teders, M. & Glorius, F. Approach to comparing the functional group tolerance of reactions. J. Org. Chem. 82, 9154–9159 (2017).

    Article  CAS  Google Scholar 

  17. Collins, K. D. & Glorius, F. Intermolecular reaction screening as a tool for reaction evaluation. Acc. Chem. Res. 48, 619–627 (2015).

    Article  CAS  Google Scholar 

  18. Richardson, J., Ruble, J. C., Love, E. A. & Berritt, S. A method for identifying and developing functional group tolerant catalytic reactions: application to the Buchwald–Hartwig amination. J. Org. Chem. 82, 3741–3750 (2017).

    Article  CAS  Google Scholar 

  19. Lin, S. et al. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS. Science 361, eaar6236 (2018).

    Article  Google Scholar 

  20. Teders, M. et al. The energy transfer enabled biocompatible disulfide–ene reaction. Nat. Chem. 10, 981–988 (2018).

    Article  CAS  Google Scholar 

  21. Forouhar, F. et al. Two Fe-S cluster catalyse sulfur insertion by radical-SAM methylthiotransferases. Nat. Chem. Biol. 9, 333–338 (2013).

    Article  CAS  Google Scholar 

  22. Chen, Y., Kamlet, A. S., Steinman, J. B. & Liu, D. R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nat. Chem 3, 146–153 (2011).

    Article  Google Scholar 

  23. Huang, H., Zhang, G., Gong, L., Zhang, S. & Chen, Y. Visible-light-induced chemoselective deboronative alkynylation under biomolecule-compatible conditions. J. Am. Chem. Soc. 136, 2280–2283 (2014).

    Article  CAS  Google Scholar 

  24. Zhu, Y., Bauer, M. & Ackermann, L. Late-stage peptide diversification by bioorthogonal catalytic C–H arylation at 23 °C in H2O. Chem. Eur. J 21, 9980–9983 (2015).

    Article  CAS  Google Scholar 

  25. Good, N. E. et al. Ion buffers for biological research. Biochemistry 5, 467–477 (1966).

    Article  CAS  Google Scholar 

  26. Good, N. E. & Izawa, S. Hydrogen ion buffers. Methods Enzymol 24, 53–68 (1972).

    Article  CAS  Google Scholar 

  27. Ferguson, W. J. et al. Hydrogen ion buffers for biological research. Anal. Biochem. 104, 300–310 (1980).

    Article  CAS  Google Scholar 

  28. Gong, Y. & Pan, L. Recent advances in bioorthogonal reactions for site-specific protein labeling and engineering. Tetrahedron Lett. 56, 2123–2132 (2015).

    Article  CAS  Google Scholar 

  29. Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    Article  CAS  Google Scholar 

  30. Giustarini, D. et al. Glutathione, glutathionedisulfide, and S-glutathionylatedproteins in cell cultures. Free Radic. Biol. Med. 89, 971–981 (2015).

    Article  Google Scholar 

  31. Geng, X. et al. Copper-catalyzed direct N-arlyation of N-arylsulfonanilides using diaryliodonium salts in water. Tetrahedron Lett. 55, 3856–3859 (2014).

    Article  CAS  Google Scholar 

  32. Linder, M. C. The relationship of copper to DNA damage and damage prevention in humans. Mutat. Res. 733, 83–91 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Hüwel, W. Dörner and S. Wulff for experimental and technical assistance (all WWU Münster). This work was supported by the Deutsche Forschungsgemeinschaft (Leibniz Award to F.G. and RE2796/6-1 to A.R.) and by the Fonds der Chemischen Industrie (doctoral fellowship to L.A. and Dozentenpreis to A.R.). M.T. thanks SusChemSys 2.0 for general support.

Author information

Authors and Affiliations

Authors

Contributions

L.A., M.T., A.R. and F.G. designed the concept and the protocol. L.A. and M.T. performed all experimental work. All authors co-wrote the paper.

Corresponding authors

Correspondence to Andrea Rentmeister or Frank Glorius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Protocols thanks Gonçalo Bernardes and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Teders, M. et al. Nat. Chem. 10, 981–988 (2018): https://www.nature.com/articles/s41557-018-0102-z

Supplementary information

Supplementary Information

Supplementary Figures 1–23, Supplementary Table 1, Supplementary Note 1 and Supplementary Procedure 1

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anhäuser, L., Teders, M., Rentmeister, A. et al. Bio-additive-based screening: toward evaluation of the biocompatibility of chemical reactions. Nat Protoc 14, 2599–2626 (2019). https://doi.org/10.1038/s41596-019-0190-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0190-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing