Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Towards simple kinetic models of functional dynamics for a kinase subfamily

Abstract

Kinases are ubiquitous enzymes involved in the regulation of critical cellular pathways. However, in silico modelling of the conformational ensembles of these enzymes is difficult due to inherent limitations and the cost of computational approaches. Recent algorithmic advances combined with homology modelling and parallel simulations have enabled researchers to address this computational sampling bottleneck. Here, we present the results of molecular dynamics studies for seven Src family kinase (SFK) members: Fyn, Lyn, Lck, Hck, Fgr, Yes and Blk. We present a sequence invariant extension to Markov state models, which allows us to quantitatively compare the structural ensembles of the seven kinases. Our findings indicate that in the absence of their regulatory partners, SFK members have similar in silico dynamics with active state populations ranging from 4 to 40% and activation timescales in the hundreds of microseconds. Furthermore, we observe several potentially druggable intermediate states, including a pocket next to the adenosine triphosphate binding site that could potentially be targeted via a small-molecule inhibitor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Starting structures for the Fyn simulations were generated from a Src-based homology model that corresponds to the inactive state and from a crystal structure of Fyn in its active state22.
Fig. 2: ATP-bound Fyn samples a kinome-wide ‘DFG in’ conformational landscape.
Fig. 3: Activation is a concerted process: model for Fyn kinase starting from the Src-like inactive state and ending in the active state.
Fig. 4: Catalytic domains of SFK members sample several macrostates with active states being within 2 kcal mol−1 of the inactive state.

Similar content being viewed by others

References

  1. Shukla, D., Meng, Y., Roux, B. & Pande, V. S. Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat. Commun. 5, 3397 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Skora, L., Mestan, J., Fabbro, D., Jahnke, W. & Grzesiek, S. NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors. Proc. Natl Acad. Sci. USA 110, E4437–E4445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Endicott, J. A., Noble, M. E. M. & Johnson, L. N. The structural basis for control of eukaryotic protein kinases. Annu. Rev. Biochem. 81, 587–613 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Johnson, L. N., Noble, M. E. M. & Owen, D. J. Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Nowakowski, J. et al. Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolume crystallography. Structure 10, 1659–1667 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Greuber, E. K., Smith-Pearson, P., Wang, J. & Pendergast, A. M. Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat. Rev. Cancer 13, 559–571 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parsons, S. J. & Parsons, J. T. Src family kinases, key regulators of signal transduction. Oncogene 23, 7906–7909 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. de Wispelaere, M., LaCroix, A. J. & Yang, P. L. The small molecules AZD0530 and dasatinib inhibit dengue virus RNA replication via Fyn kinase. J. Virol. 87, 7367–7381 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schenone, S. et al. Fyn kinase in brain diseases and cancer: the search for inhibitors. Curr. Med. Chem. 18, 2921–2942 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Akimoto, M. et al. Signaling through dynamic linkers as revealed by pKa. Proc. Natl Acad. Sci. USA 110, 14231–14236 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Cowan-Jacob, S. W. et al. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure 13, 861–871 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Foda, Z. H., Shan, Y., Kim, E. T., Shaw, D. E. & Seeliger, M. A. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase. Nat. Commun. 6, 5939 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Bernadó, P., Pérez, Y., Svergun, D. I. & Pons, M. Structural characterization of the active and inactive states of Src kinase in solution by small-angle X-ray scattering. J. Mol. Biol. 376, 492–505 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Hantschel, O. & Superti-Furga, G. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat. Rev. Mol. Cell Biol. 5, 33–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Pendergast, A. M. The Abl family kinases: mechanisms of regulation and signaling. Adv. Cancer Res. 85, 51–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Shan, Y., Arkhipov, A., Kim, E. T., Pan, A. C. & Shaw, D. E. Transitions to catalytically inactive conformations in EGFR kinase. Proc. Natl Acad. Sci. USA 110, 7270–7275 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xu, W., Doshi, A., Lei, M., Eck, M. J. & Harrison, S. C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3, 629–638 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Resh, M. D. Fyn, a Src family tyrosine kinase. Int. J. Biochem. Cell Biol. 30, 1159–1162 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Kinoshita, T., Matsubara, M., Ishiguro, H., Okita, K. & Tada, T. Structure of human Fyn kinase domain complexed with staurosporine. Biochem. Biophys. Res. Commun. 346, 840–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Williams, J. C., Wierenga, R. K. & Saraste, M. Insights into Src kinase functions: structural comparisons. Trends Biochem. Sci. 23, 179–184 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Taylor, S. S. & Kornev, A. P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci. 36, 65–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Sicheri, F. & Kuriyan, J. Structures of Src-family tyrosine kinases. Curr. Opin. Struct. Biol. 7, 777–785 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Kornev, A. P., Haste, N. M., Taylor, S. S. & Eyck, L. F. T. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl Acad. Sci. USA 103, 17783–17788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaltiel, S., Cox, S. & Taylor, S. S. Conserved water molecules contribute to the extensive network of interactions at the active site of protein kinase A. Proc. Natl Acad. Sci. USA 95, 484–491 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, S., Banavali, N. K. & Roux, B. Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories. Proc. Natl Acad. Sci. USA 106, 3776–3781 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bowman, G. R., Pande, V. S. & Noé, F. (eds) An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation 7–22 (Springer, Dordrecht, 2014).

  30. Pan, A. C., Sezer, D. & Roux, B. Finding transition pathways using the string method with swarms of trajectories. J. Phys. Chem. B 112, 3432–3440 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, S. & Roux, B. Src kinase conformational activation: thermodynamics, pathways, and mechanisms. PLoS Comput. Biol. 4, e1000047 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ozkirimli, E., Yadav, S., Miller, W. & Post, C. An electrostatic network and long‐range regulation of Src kinases. Protein Sci. 295, 1871–1880 (2008).

    Article  CAS  Google Scholar 

  33. Pan, A. C., Weinreich, T. M., Shan, Y., Scarpazza, D. P. & Shaw, D. E. Assessing the accuracy of two enhanced sampling methods using EGFR kinase transition pathways: the influence of collective variable choice. J. Chem. Theory Comput. 10, 2860–2865 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Hamelberg, D., Mongan, J. & McCammon, J. A. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J. Chem. Phys. 120, 11919–11929 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Abrams, C. & Bussi, G. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy 16, 163–199 (2013).

    Article  CAS  Google Scholar 

  36. Shirts, M. & Pande, V. S. Screen savers of the world unite! Science 290, 1903–1904 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Kohlhoff, K. J. et al. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nat. Chem. 6, 15–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Lane, T. J., Shukla, D., Beauchamp, K. A. & Pande, V. S. To milliseconds and beyond: challenges in the simulation of protein folding. Curr. Opin. Struct. Biol. 23, 58–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Levinson, N. M., Seeliger, M. A., Cole, P. A. & Kuriyan, J. Structural basis for the recognition of c-Src by its inactivator Csk. Cell 134, 124–134 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sultan, M. M., Denny, R. A., Unwalla, R., Lovering, F. & Pande, V. S. Millisecond dynamics of BTK reveal kinome-wide conformational plasticity within the apo kinase domain. Sci. Rep. 7, 15604 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuglstatter, A. et al. Insights into the conformational flexibility of Bruton’s tyrosine kinase from multiple ligand complex structures. Protein Sci. 20, 428–436 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Pande, V. S., Beauchamp, K. & Bowman, G. R. Everything you wanted to know about Markov state models but were afraid to ask. Methods 52, 99–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prinz, J.-H. et al. Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134, 174105 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Voelz, V. A., Elman, B., Razavi, A. M. & Zhou, G. Surprisal metrics for quantifying perturbed conformational dynamics in Markov state models. J. Chem. Theory Comput. 10, 5716–5728 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Wan, H., Zhou, G. & Voelz, V. A. A maximum-caliber approach to predicting perturbed folding kinetics due to mutations. J. Chem. Theory Comput. 12, 5768–5776 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Schwantes, C. R. & Pande, V. S. Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. J. Chem. Theory Comput. 9, 2000–2009 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McGibbon, R. T. & Pande, V. S. Variational cross-validation of slow dynamical modes in molecular kinetics. J. Chem. Phys. 142, 124105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sultan, M. M., Kiss, G., Shukla, D. & Pande, V. S. Automatic selection of order parameters in the analysis of large scale molecular dynamics simulations. J. Chem. Theory Comput. 10, 5217–5223 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Möbitz, H. The ABC of protein kinase conformations. Biochim. Biophys. Acta Proteins Proteom. 1854, 1555–1566 (2015).

    Article  CAS  Google Scholar 

  50. Eswar, N. et al. Comparative protein structure modeling using MODELLER. Protein Sci. 50, 9.1 (2007).

    Google Scholar 

  51. Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. & Shaw, D. E. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Levinson, N. M. et al. A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol. 4, e144 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Huang, H., Zhao, R., Dickson, B. M., Skeel, R. D. & Post, C. B. αC helix as a switch in the conformational transition of Src/CDK-like kinase domains. J. Phys. Chem. B 116, 4465–4475 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu, S., Li, S. & Zhang, J. Harnessing allostery: a novel approach to drug discovery. Med. Res. Rev. 34, 1242–1285 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Sun, G. et al. Effect of autophosphorylation on the catalytic and regulatory properties of protein tyrosine kinase Src. Arch. Biochem. Biophys. 397, 11–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Weijland, A. et al. The purification and characterization of the catalytic domain of Src expressed in Schizosaccharomyces pombe. Comparison of unphosphorylated and tyrosine phosphorylated species. Eur. J. Biochem. 240, 756–764 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Kemble, D. J., Wang, Y. H. & Sun, G. Bacterial expression and characterization of catalytic loop mutants of Src protein tyrosine kinase. Biochemistry 45, 14749–14754 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Xiao, Y. et al. Phosphorylation releases constraints to domain motion in ERK2. Proc. Natl Acad. Sci. USA 111, 2506–2511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xiao, Y., Liddle, J. C., Pardi, A. & Ahn, N. G. Dynamics of protein kinases: insights from nuclear magnetic resonance. Acc. Chem. Res. 48, 1106–1114 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pucheta-Martínez, E. et al. An allosteric cross-talk between the activation loop and the ATP binding site regulates the activation of Src kinase. Sci. Rep. 6, 24235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chodera, J. D. & Noé, F. Markov state models of biomolecular conformational dynamics. Curr. Opin. Struct. Biol. 25, 135–144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moroco, J. A. et al. Differential sensitivity of Src-family kinases to activation by SH3 domain displacement. PLoS ONE 9, e105629 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  PubMed  Google Scholar 

  65. Baker, E. N. & Hubbard, R. E. Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol. 44, 97–179 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the donors of the Folding@home distributed computing platform for providing the computer power used for this project. M.M.S. acknowledges support from the National Science Foundation (grant NSF-MCB-0954714) and the National Institutes of Health (S10 Shared Instrumentation grant 1S10RR02664701) for their support of the Biox3 computer cluster at Stanford. G.K. acknowledges support from the the NIH Simbios Program, and the Center for Molecular Analysis and Design at Stanford. The authors also thank D. Shukla, M. Harrigan, B. Husic, A. Peck, J. Shi, C. Hernández and other members of the Pande Lab for many insightful discussions and critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.M.S., G.K. and V.S.P. designed the study. M.M.S. ran and analysed the simulations. M.M.S. and G.K. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Vijay S. Pande.

Ethics declarations

Competing interests

M.M.S. declares no competing interests. G.K. is currently employed by Revolution Medicines. V.S.P. is a consultant and Scientific Advisory Board (SAB) member of Schrodinger LLC and Globavir, sits on the Board of Directors of Apeel Inc., Freenome Inc., Omada Health, Patient Ping and Rigetti Computing, and is a General Partner at Andreessen Horowitz.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Simulated Sequences, Supplementary Figures, & Supplementary Notes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, M.M., Kiss, G. & Pande, V.S. Towards simple kinetic models of functional dynamics for a kinase subfamily. Nature Chem 10, 903–909 (2018). https://doi.org/10.1038/s41557-018-0077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0077-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing