Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures


Aqueous compatible supramolecular materials hold promise for applications in environmental remediation, energy harvesting and biomedicine. One remaining challenge is to actively select a target structure from a multitude of possible options, in response to chemical signals, while maintaining constant, physiological conditions. Here, we demonstrate the use of amino acids to actively decorate a self-assembling core molecule in situ, thereby controlling its amphiphilicity and consequent mode of assembly. The core molecule is the organic semiconductor naphthalene diimide, functionalized with D- and L- tyrosine methyl esters as competing reactive sites. In the presence of α-chymotrypsin and a selected encoding amino acid, kinetic competition between ester hydrolysis and amidation results in covalent or non-covalent amino acid incorporation, and variable supramolecular self-assembly pathways. Taking advantage of the semiconducting nature of the naphthalene diimide core, electronic wires could be formed and subsequently degraded, giving rise to temporally regulated electro-conductivity.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Active amino acid encoding of biocatalytic self-assembly pathways.
Fig. 2: Biocatalytic amino acid encoding of transient supramolecular chirality.
Fig. 3: Biocatalytic amino acid encoding of chiral nanotubes.
Fig. 4: Dynamic helix reconfiguration through programmed stereomutation.
Fig. 5: Transient supramolecular conductance in aqueous media.


  1. 1.

    Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotech. 21, 1171–1178 (2003).

    Article  CAS  Google Scholar 

  4. 4.

    Campbell, V. E. et al. Cascading transformations within a dynamic self-assembled system. Nat. Chem. 2, 684–687 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Lehn, J.-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Maiti, S., Fortunati, I., Ferrante, C., Scrimin, P. & Prins, L. J. Dissipative self-assembly of vesicular nanoreactors. Nat. Chem. 8, 725–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Ashkenasy, G., Hermans, T. M., Otto, S. & Taylor, A. F. Systems chemistry. Chem. Soc. Rev. 46, 2543–2554 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Heuser, T., Steppert, A.-K., Molano Lopez, C., Zhu, B. & Walther, A. Generic concept to program the time domain of self-assemblies with a self-regulation mechanism. Nano Lett. 15, 2213–2219 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Debnath, S., Roy, S. & Ulijn, R. V. Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly. J. Am. Chem. Soc. 135, 16789–16792 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Dhiman, S., Jain, A. & George, S. J. Transient helicity: fuel-driven temporal control over conformational switching in a supramolecular polymer. Angew. Chem. Int. Ed. 56, 1329–1333 (2017).

    Article  CAS  Google Scholar 

  15. 15.

    Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. Nat. Commun. 8, 15899-15906 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Semenov, S. N. et al. Rational design of functional and tunable oscillating enzymatic networks. Nat. Chem. 7, 160–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Epstein, I. R. & Xu, B. Reaction–diffusion processes at the nano- and microscales. Nat. Nanotechnol. 11, 312–319 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Chen, C. et al. Design of multi-phase dynamic chemical networks. Nat. Chem. 9, 799–804 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Feng, Z., Wang, H., Zhou, R., Li, J. & Xu, B. Enzyme-instructed assembly and disassembly processes for targeting downregulation in cancer cells. J. Am. Chem. Soc. 139, 3950–3953 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993).

    Article  CAS  Google Scholar 

  25. 25.

    Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Du, X., Zhou, J. & Shi, J. & Xu, B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem. Rev. 115, 13165–13307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Fleming, S. & Ulijn, R. V. Design of nanostructures based on aromatic peptide amphiphiles. Chem. Soc. Rev. 43, 8150–8177 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Gazit, E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 36, 1263–1269 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Draper, E. R. & Adams, D. J. Low-molecular-weight gels: the state of the art. Chem 3, 390–410 (2017).

    Article  CAS  Google Scholar 

  30. 30.

    Sanders, A. M., Magnanelli, T. J., Bragg, A. E. & Tovar, J. D. Photoinduced electron transfer within supramolecular donor–acceptor peptide nanostructures under aqueous conditions. J. Am. Chem. Soc. 138, 3362–3370 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Draper, E. R. et al. Air-stable photoconductive films formed from perylene bisimide gelators. J. Mater. Chem. C 2, 5570–5575 (2014).

    Article  CAS  Google Scholar 

  32. 32.

    Faramarzi, V. et al. Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects. Nat. Chem. 4, 485–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Xu, H. et al. An investigation of the conductivity of peptide nanotube networks prepared by enzyme-triggered self-assembly. Nanoscale 2, 960–966 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Nalluri, S. K. M., Berdugo, C., Javid, N., Frederix, P. W. J. M. & Ulijn, R. V. Biocatalytic self-assembly of supramolecular charge-transfer nanostructures based on n-type semiconductor-appended peptides. Angew. Chem. Int. Ed. 53, 5882–5887 (2014).

    Article  CAS  Google Scholar 

  35. 35.

    Trausel, F. et al. Catalysis of supramolecular hydrogelation. Acc. Chem. Res. 49, 1440–1447 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Yang, Z. et al. Enzymatic formation of supramolecular hydrogels. Adv. Mater. 16, 1440–1444 (2004).

    Article  Google Scholar 

  37. 37.

    Qin, X. et al. Enzyme-triggered hydrogelation via self-assembly of alternating peptides. Chem. Commun. 49, 4839–4841 (2013).

    Article  CAS  Google Scholar 

  38. 38.

    Pappas, C. G., Sasselli, I. R. & Ulijn, R. V. Biocatalytic pathway selection in transient tripeptide nanostructures. Angew. Chem. Int. Ed. 54, 8119–8123 (2015).

    Article  CAS  Google Scholar 

  39. 39.

    Pappas, C. G. et al. Dynamic peptide libraries for the discovery of supramolecular nanomaterials. Nat. Nanotechnol. 11, 960–967 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Ardoña, H. A. M. & Tovar, J. D. Peptide π-electron conjugates: organic electronics for biology? Bioconjug. Chem. 26, 2290–2302 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Gololobov, M. Y., Voyushina, T. L., Stepanov, V. M. & Adlercreutz, P. Nucleophile specificity in α-chymotrypsin- and subtilisin-(Bacillus subtilis strain 72) catalyzed reactions. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1160, 188–192 (1992).

    Article  CAS  Google Scholar 

  42. 42.

    Harada, N. & Nakanishi, K. Exciton chirality method and its application to configurational and conformational studies of natural products. Acc. Chem. Res. 5, 257–263 (1972).

    Article  CAS  Google Scholar 

  43. 43.

    Kumar, M. et al. A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis. Nat. Commun. 5, 5793-5800 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Gawroński, J., Brzostowska, M., Kacprzak, K., Kołbon, H. & Skowronek, P. Chirality of aromatic bis-imides from their circular dichroism spectra. Chirality 12, 263–268 (2000).

    Article  PubMed  Google Scholar 

  45. 45.

    Wang, C., Wang, Z. & Zhang, X. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Acc. Chem. Res. 45, 608–618 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Rahman, A. R. A., Justin, G. & Guiseppi-Elie, A. Bioactive hydrogel layers on microdisk electrode arrays: impedimetric characterization and equivalent circuit modeling. Electroanalysis 21, 1135–1144 (2009).

    Article  CAS  Google Scholar 

  47. 47.

    Sun, H. et al. Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture. Nat. Chem. 9, 817–823 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Boekhoven, J. et al. Catalytic control over supramolecular gel formation. Nat. Chem. 5, 433–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Zhang, A. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Marchesan, S., Ballerini, L. & Prato, M. Nanomaterials for stimulating nerve growth. Science 356, 1010–1011 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references


The authors acknowledge staff at the Biomolecular Spectroscopy Facility for Circular Dichroism, Imaging Suite Facility and Nanofabrication Facility, all of which are part of the Advanced Science Research Center at the Graduate Center, City University of New York. The research leading to these results received funding from the US Air Force (AFOSR, grants FA9550-15-1-0192 and FA9550-014-1-0350), US Army Research Laboratory and US Army Research Office under contract/grant number W911NF-16-1-0113.

Author information




M.K. and R.V.U. conceived the idea, designed and discussed the concepts and experiments, and analysed the data. M.K. performed the experimental work. N.I. and A.H. designed and performed the electronic transport measurements and analysed the data. N.W. performed and analysed the infrared spectroscopy (IR) measurement. V.N. performed the atomic force microscopy experiment. M.K., R.V.U., N.I. and A.H. co-wrote the paper. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Rein V. Ulijn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, and Supplementary Figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Ing, N.L., Narang, V. et al. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nature Chem 10, 696–703 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing