Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent

Abstract

Glycosylated natural products and synthetic glycopeptides represent a significant and growing source of biochemical probes and therapeutic agents. However, methods that enable the aqueous glycosylation of endogenous amino acid functionality in peptides without the use of protecting groups are scarce. Here, we report a transformation that facilitates the efficient aqueous O-glycosylation of phenolic functionality in a wide range of small molecules, unprotected tyrosine, and tyrosine residues embedded within a range of complex, fully unprotected peptides. The transformation, which uses glycosyl fluoride donors and is promoted by Ca(OH)2, proceeds rapidly at room temperature in water, with good yields and selective formation of unique anomeric products depending on the stereochemistry of the glycosyl donor. High functional group tolerance is observed, and the phenol glycosylation occurs selectively in the presence of virtually all side chains of the proteinogenic amino acids with the singular exception of Cys. This method offers a highly selective, efficient, and operationally simple approach for the protecting-group-free synthesis of O-aryl glycosides and Tyr-O-glycosylated peptides in water.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Natural products containing phenolic O-glycosyl moieties and strategies to access phenolic O-glycosyl linkages in small and complex molecules.
Fig. 2: Evaluating substrate scope.
Fig. 3: Tyrosine-selective glycosylation of glucagon-like peptide-1.
Fig. 4: Tyrosine-selective glycosylation of biologically active peptides.
Fig. 5: Reactivity of cysteine under the aqueous glycosylation conditions.

References

  1. 1.

    Bednarska, N. G., Wren, B. W. & Willcocks, S. J. The importance of the glycosylation of antimicrobial peptides: natural and synthetic approaches. Drug Discov. Today 22, 919–926 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Varamini, P. et al. Synthesis and biological evaluation of an orally active glycosylated endomorphin-1. J. Med. Chem. 55, 5859–5867 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Polt, R., Dhanasekaran, M. & Keyari, C. M. Glycosylated neuropeptides: a new vista for neuropsychopharmacology? Med. Res. Rev. 25, 557–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Ho, H. H., Gilbert, M. T., Nussenzveig, D. R. & Gershengorn, M. C. Glycosylation is important for binding to human calcitonin receptors. Biochemistry 38, 1866–1872 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Herzner, H., Reipen, T., Schultz, M. & Kunz, H. Synthesis of glycopeptides containing carbohydrate and peptide recognition motifs. Chem. Rev. 100, 4495–4538 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Moradi, S. V., Hussein, W. M., Varamini, P., Simerska, P. & Toth, I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem. Sci. 7, 2492–2500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Paradís-Bas, M., Tulla-Puche, J. & Albericio, F. The road to the synthesis of ‘difficult peptides’. Chem. Soc. Rev. 45, 631–654 (2016).

    Article  PubMed  Google Scholar 

  8. 8.

    Westerlind, U. Synthetic glycopeptides and glycoproteins with applications in biological research. Beilstein J. Org. Chem. 8, 804–818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Pratt, M. R. & Bertozzi, C. R. Synthetic glycopeptides and glycoproteins as tools for biology. Chem. Soc. Rev. 34, 58–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Seitz, O. Glycopeptide synthesis and the effects of glycosylation on protein structure and activity. ChemBioChem 1, 214–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Downey, A. M. & Hocek, M. Strategies toward protecting group-free glycosylation through selective activation of the anomeric center. Beilstein J. Org. Chem. 13, 1239–1279 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Taylor, M. S. Catalyst-controlled, regioselective reactions of carbohydrate derivatives. Top. Curr. Chem. 372, 125–155 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Lee, D. & Taylor, M. S. Catalyst-controlled regioselective reactions of carbohydrate derivatives. Synthesis 44, 3421–3431 (2012).

    Article  CAS  Google Scholar 

  14. 14.

    Wang, L.-X. & Amin, M. N. Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions. Chem. Biol. 21, 51–66 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Nakayama, A. et al. Enzymatic glycosylation of vancomycin aglycon: completion of a total synthesis of vancomycin and N- and C-terminus substituent effects of the aglycon substrate. Org. Lett. 16, 3572–3575 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Li, T.-L., Liu, Y.-C. & Lyu, S.-Y. Combining biocatalysis and chemoselective chemistries for glycopeptide antibiotics modification. Curr. Opin. Chem. Biol. 16, 170–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Zhang, C. et al. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science 313, 1291–1294 (2006).

    Article  CAS  Google Scholar 

  18. 18.

    Demchenko, A. V. Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance (Wiley-VCH, Weinheim, 2008).

  19. 19.

    deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist's guide. Biochemistry 56, 3863–3873 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Gunnoo, S. B. & Madder, A. Bioconjugation—using selective chemistry to enhance the properties of proteins and peptides as therapeutics and carriers. Org. Biomol. Chem. 14, 8002–8013 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Koniev, O. & Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 44, 5495–5551 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Gamblin, D. P., Scanlan, E. M. & Davis, B. G. Glycoprotein synthesis: an update. Chem. Rev. 109, 131–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Davis, B. G. Synthesis of glycoproteins. Chem. Rev. 102, 579–602 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Lamandé-Langle, S. et al. ‘Click’ glycosylation of peptides through cysteine propargylation and CuAAC. Bioorg. Med. Chem. 22, 6672–6683 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Dondoni, A. & Marra, A. Recent applications of thiol-ene coupling as a click process for glycoconjugation. Chem. Soc. Rev. 41, 573–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Fernandez-Gonzalez, M. et al. Site-selective chemoenzymatic construction of synthetic glycoproteins using endoglycosidases. Chem. Sci. 1, 709–715 (2010).

    Article  CAS  Google Scholar 

  28. 28.

    Bernardes, G. J. L. et al. From disulfide- to thioether-linked glycoproteins. Angew. Chem. Int. Ed. 47, 2244–2247 (2008).

    Article  CAS  Google Scholar 

  29. 29.

    Krauss, I. J. et al. Fully synthetic carbohydrate HIV antigens designed on the logic of the 2G12 antibody. J. Am. Chem. Soc. 129, 11042–11044 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Mu, J. & Roach, P. J. Characterization of human glycogenin-2, a self-glucosylating initiator of liver glycogen metabolism. J. Biol. Chem. 273, 34850–34856 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Zarschler, K. et al. Protein tyrosine O-glycosylation—a rather unexplored prokaryotic glycosylation system. Glycobiology 20, 787–798 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Halim, A. et al. Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid β-peptides in human cerebrospinal fluid. Proc. Natl Acad. Sci. USA 108, 11848–11853 (2011).

    Article  PubMed  Google Scholar 

  33. 33.

    Lafite, P. & Daniellou, R. Rare and unusual glycosylation of peptides and proteins. Nat. Prod. Rep. 29, 729–738 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Wang, P., Nilsson, J., Brinkmalm, G., Larson, G. & Huang, X. Synthesis aided structural determination of amyloid-β(1–15) glycopeptides, new biomarkers for Alzheimer's disease. Chem. Commun. 50, 15067–15070 (2014).

    Article  CAS  Google Scholar 

  35. 35.

    Fichna, J. et al. Novel glycosylated endomorphin-2 analog produces potent centrally-mediated antinociception in mice after peripheral administration. Bioorg. Med. Chem. Lett. 23, 6673–6676 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Jansson, A. M. et al. Solid-phase glycopeptide synthesis of tyrosine-glycosylated glycogenin fragments as substrates for glucosylation by glycogenin. J. Chem. Soc., Perkin Trans. 1, 1001–1006 (1996).

    Article  Google Scholar 

  37. 37.

    Fahmi, N. E., Dedkova, L., Wang, B., Golovine, S. & Hecht, S. M. Site-specific incorporation of glycosylated serine and tyrosine derivatives into proteins. J. Am. Chem. Soc. 129, 3586–3597 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Michael, A. On the synthesis of helicon and phenolglucoside. Am. Chem. J. 1, 305–312 (1879).

    Article  Google Scholar 

  39. 39.

    Brito-Arias, M. Synthesis and Characterization of Glycosides 81–168 (Springer International, Cham, 2016).

  40. 40.

    Capicciotti, C. J. et al. O-Aryl-glycoside ice recrystallization inhibitors as novel cryoprotectants: a structure–function study. ACS Omega 1, 656–662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Henderson, A. S., Medina, S., Bower, J. F. & Galan, M. C. Nucleophilic aromatic substitution (SNAr) as an approach to challenging carbohydrate–aryl ethers. Org. Lett. 17, 4846–4849 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Li, Y., Mo, H., Lian, G. & Yu, B. Revisit of the phenol O-glycosylation with glycosyl imidates, BF3·OEt2 is a better catalyst than TMSOTf. Carbohydr. Res. 363, 14–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Jacobsson, M., Malmberg, J. & Ellervik, U. Aromatic O-glycosylation. Carbohydr. Res. 341, 1266–1281 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Jensen, K. J. O-Glycosylations under neutral or basic conditions. J. Chem. Soc., Perkin Trans. 1, 2219–2233 (2002).

    Article  CAS  Google Scholar 

  45. 45.

    Park, Y. et al. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science 355, 162–166 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Hahm, H. S. et al. Automated glycan assembly of complex oligosaccharides related to blood group determinants. J. Org. Chem. 81, 5866–5877 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Mydock, L. K. & Demchenko, A. V. Mechanism of chemical O-glycosylation: from early studies to recent discoveries. Org. Biomol. Chem. 8, 497–510 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Nicolaou, K. C. & Mitchell, H. J. Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew. Chem. Int. Ed. 40, 1576–1624 (2001).

    Article  CAS  Google Scholar 

  49. 49.

    Toshima, K. Glycosyl fluorides in glycosidations. Carbohydr. Res. 327, 15–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Shimizu, M., Togo, H. & Yokoyama, M. Chemistry of glycosyl fluorides. Synthesis 1998, 799–822 (1998).

    Article  Google Scholar 

  51. 51.

    Willems, L. I. et al. From covalent glycosidase inhibitors to activity-based glycosidase probes. Chem. Eur. J. 20, 10864–10872 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Rempel, B. P. & Withers, S. G. Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology 18, 570–586 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Evans, M. J. & Cravatt, B. F. Mechanism-based profiling of enzyme families. Chem. Rev. 106, 3279–3301 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Banait, N. S. & Jencks, W. P. Reactions of anionic nucleophiles with α-d-glucopyranosyl fluoride in aqueous solution through a concerted, ANDN (SN2) mechanism. J. Am. Chem. Soc. 113, 7951–7958 (1991).

    Article  CAS  Google Scholar 

  55. 55.

    Banait, N. S. & Jencks, W. P. General-acid and general-base catalysis of the cleavage of α-d-glucopyranosyl fluoride. J. Am. Chem. Soc. 113, 7958–7963 (1991).

    Article  CAS  Google Scholar 

  56. 56.

    Pelletier, G., Zwicker, A., Allen, C. L., Schepartz, A. & Miller, S. J. Aqueous glycosylation of unprotected sucrose employing glycosyl fluorides in the presence of calcium ion and trimethylamine. J. Am. Chem. Soc. 138, 3175–3182 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Bohé, L. & Crich, D. A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art. Carbohydr. Res. 403, 48–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Chan, J., Sannikova, N., Tang, A. & Bennet, A. J. Transition-state structure for the quintessential SN2 reaction of a carbohydrate: reaction of α-glucopyranosyl fluoride with azide ion in water. J. Am. Chem. Soc. 136, 12225–12228 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Stubbs, J. M. & Marx, D. Glycosidic bond formation in aqueous solution: on the oxocarbenium intermediate. J. Am. Chem. Soc. 125, 10960–10962 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Micheel, F. & Klemer, A. Über den Reaktionsmechanismus der Glycosidbildung aus α- und β-1-Fluor-Derivaten der d-Glucose und d-Mannose. Chem. Ber. 91, 663–667 (1958).

    Article  CAS  Google Scholar 

  61. 61.

    Halcomb, R. L. & Danishefsky, S. J. On the direct epoxidation of glycals: application of a reiterative strategy for the synthesis of β-linked oligosaccharides. J. Am. Chem. Soc. 111, 6661–6666 (1989).

    Article  CAS  Google Scholar 

  62. 62.

    Underwood, C. R. et al. Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J. Biol. Chem. 285, 723–730 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Kieffer, T. J. & Habener, J. F. The glucagon-like peptides. Endocrin. Rev. 20, 876–913 (1999).

    Article  CAS  Google Scholar 

  64. 64.

    Zadina, J. E. et al. Endomorphins: novel endogenous μ-opiate receptor agonists in regions of high μ-opiate receptor density. Ann. NY Acad. Sci. 897, 136–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. 65.

    Podlogar, B. L. et al. Conformational analysis of the endogenous μ-opioid agonist endomorphin-1 using NMR spectroscopy and molecular modeling. FEBS Lett. 439, 13–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    Noda, M. et al. Isolation and structural organization of the human preproenkephalin gene. Nature 297, 431–434 (1982).

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Burgus, R. et al. Primary structure of the ovine hypothalamic luteinizing hormone-releasing factor (LRF). Proc. Natl Acad. Sci. USA 69, 278–282 (1972).

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Donaldson, Z. R. & Young, L. J. Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322, 900–904 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Austin, L. A. & Heath, H. 3rd Calcitonin physiology and pathophysiology. N. Engl. J. Med. 304, 269–278 (1981).

    Article  CAS  PubMed  Google Scholar 

  70. 70.

    Haynes, W. M. (ed.) CRC Handbook of Chemistry and Physics 97th edn (CRC/Taylor & Francis, Boca Raton, 2017); http://hbcponline.com/faces/contents/ContentsSearch.xhtml

    Google Scholar 

  71. 71.

    Lian, G., Zhang, X. & Yu, B. Thioglycosides in carbohydrate research. Carbohydr. Res. 403, 13–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. 72.

    Brimble, M. A. et al. Synthesis of the antimicrobial S-linked glycopeptide, glycocin F. Chem. Eur. J. 21, 3556–3561 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. 73.

    Rojas-Ocáriz, V. et al. Design of α-S-neoglycopeptides derived from MUC1 with a flexible and solvent-exposed sugar moiety. J. Org. Chem. 81, 5929–5941 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. 74.

    Kahne, D., Walker, S., Cheng, Y. & Van Engen, D. Glycosylation of unreactive substrates. J. Am. Chem. Soc. 111, 6881–6882 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was initially supported by the W.M. Keck Foundation and later by the National Institutes of Health (NIH GM068649). The authors thank A. Zwicker for insightful discussions. A.St. was a Howard Hughes Medical Institute International Student Research fellow. G.P. is grateful to NSERC (PDF) and FQRNT (B3) for postgraduate fellowships. L.H. acknowledges support from an NIH postdoctoral fellowship (F32-GM-122204).

Author information

Affiliations

Authors

Contributions

T.J.W., A.St., G.P., A.Sch. and S.J.M. conceived and designed the study. G.P. performed initial experiments. T.J.W., A.St. and L.H. performed the synthetic experiments and analysed data for all compounds. T.J.W., A.St., L.H., G.P., A.Sch. and S.J.M. co-wrote the paper.

Corresponding authors

Correspondence to Alanna Schepartz or Scott J. Miller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary synthesis and characterization details, Supplementary Tables 1–5, and NMR spectra

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wadzinski, T.J., Steinauer, A., Hie, L. et al. Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent. Nature Chem 10, 644–652 (2018). https://doi.org/10.1038/s41557-018-0041-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing