Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface

Abstract

The most common mechanism of catalytic surface chemistry is that of Langmuir and Hinshelwood (LH). In the LH mechanism, reactants adsorb, become thermalized with the surface, and subsequently react. The measured vibrational (relaxation) lifetimes of molecules adsorbed at metal surfaces are in the range of a few picoseconds. As a consequence, vibrational promotion of LH chemistry is rarely observed, with the exception of LH reactions occurring via a molecular physisorbed intermediate. Here, we directly detect adsorption and subsequent desorption of vibrationally excited CO molecules from a Au(111) surface. Our results show that CO (v = 1) survives on a Au(111) surface for ~1 × 10−10 s. Such long vibrational lifetimes for adsorbates on metal surfaces are unexpected and pose an interesting challenge to the current understanding of vibrational energy dissipation on metal surfaces. They also suggest that vibrational promotion of surface chemistry might be more common than is generally believed.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Arrival time distributions of the scattered CO molecules in v = 2→2 and 2→1 channels.
Fig. 2: Angular distributions of the scattered CO molecules.
Fig. 3: TOF curves for CO v = 2 scattering from Au(111), measured at different surface temperatures.
Fig. 4: Mean translational energy of the scattered CO molecules measured at several Ts and θs.
Fig. 5: Dependence of 〈Etrans〉 on mean incidence translational energy.
Fig. 6: Rotational temperatures for CO (v = 2→1) observed at different surface temperatures at Ei = 0.32 eV.

References

  1. Crim, F. F. Selective excitation studies of unimolecular reaction dynamics. Annu. Rev. Phys. Chem. 35.1, 657–691 (1984).

    Article  CAS  Google Scholar 

  2. Crim, F. F. Chemical dynamics of vibrationally excited molecules: controlling reactions in gases and on surfaces. Proc. Natl Acad. Sci. USA 105, 12654–12661 (2008).

    Article  PubMed  Google Scholar 

  3. Morin, M., Levinos, N. J. & Harris, A. L. Vibrational energy transfer of CO/Cu(100): nonadiabatic vibration electron coupling. J. Chem. Phys. 96, 3950–3956 (1992).

    Article  CAS  Google Scholar 

  4. Beckerle, J. D., Casassa, M. P., Cavanagh, R. R., Heilweil, E. J. & Stephenson, J. C. Ultrafast infrared response of adsorbates on metal surfaces: vibrational lifetime of CO/Pt(111). Phys. Rev. Lett. 64, 2090–2093 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Beckerle, J. D., Cavanagh, R. R., Casassa, M. P., Heilweil, E. J. & Stephenson, J. C. Sub-picosecond transient infrared-spectroscopy of adsorbates. Vibrational dynamics of CO/Pt(111). J. Chem. Phys. 95, 5403 (1991).

    Article  CAS  Google Scholar 

  6. Luntz, A. C. The dynamics of dissociative adsorption on metal surfaces: ‘First principles’ theory—experiment confrontations. Surf. Sci. 603, 1557–1563 (2009).

    Article  CAS  Google Scholar 

  7. Rettner, C. T., Michelsen, H. A. & Auerbach, D. J. Quantum-state-specific dynamics of the dissociative adsorption and associative desorption of H2 at a Cu(111) surface. J. Chem. Phys. 102, 4625–4641 (1995).

    Article  CAS  Google Scholar 

  8. Juurlink, L. B. F., McCabe, P. R., Smith, R. R., DiCologero, C. L. & Utz, A. L. Eigenstate-resolved studies of gas-surface reactivity: CH4 (ν 3) dissociation on Ni(100). Phys. Rev. Lett. 83, 868–871 (1999).

    Article  CAS  Google Scholar 

  9. Higgins, J., Conjusteau, A., Scoles, G. & Bernasek, S. L. State selective vibrational (2ν 3) activation of the chemisorption of methane on Pt (111). J. Chem. Phys. 114, 5277–5283 (2001).

    Article  CAS  Google Scholar 

  10. Schmid, M. P., Maroni, P., Beck, R. D. & Rizzo, T. R. Surface reactivity of highly vibrationally excited molecules prepared by pulsed laser excitation: CH4(2ν 3) on Ni(100). J. Chem. Phys. 117, 8603–8606 (2002).

    Article  CAS  Google Scholar 

  11. Beck, R. D. & Utz, A. L. in Dynamics of Gas–Surface Interactions: Atomic-Level Understanding of Scattering Processes at Surfaces (eds. Muino, R. D. & Bunsengo, H. F.) 179–212 (Springer, Berlin, 2013).

  12. Chadwick, H. & Beck, R. D. Quantum state-resolved studies of chemisorption reactions. Annu. Rev. Phys. Chem. 68, 39–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Langmuir, I. Chemical reactions at very low pressures. I. The clean-up of oxygen in a tungsten lamp. J. Am. Chem. Soc. 35, 105–127 (1913).

    Article  CAS  Google Scholar 

  14. Langmuir, I. Chemical reactions at low pressures. J. Am. Chem. Soc. 37, 1139–1167 (1915).

    Article  CAS  Google Scholar 

  15. Dombrowski, E., Peterson, E., Del Sesto, D. & Utz, A. L. Precursor-mediated reactivity of vibrationally hot molecules: methane activation on Ir(111). Catal. Today 244, 10–18 (2015).

    Article  CAS  Google Scholar 

  16. Seets, D. C., Wheeler, M. C. & Mullins, C. B. Mechanism of the dissociative chemisorption of methane over Ir(110): trapping-mediated or direct? Chem. Phys. Lett. 266, 431–436 (1997).

    Article  CAS  Google Scholar 

  17. Walker, A. V. & King, D. A. Dynamics of the dissociative adsorption of methane on Pt{110}(1 × 2). Phys. Rev. Lett. 82, 5156–5159 (1999).

    Article  CAS  Google Scholar 

  18. Walker, A. V. & King, D. A. Dynamics of dissociative methane adsorption on metals: CH4 on Pt{110}(1 × 2). J. Chem. Phys. 112, 4739–4748 (2000).

    Article  CAS  Google Scholar 

  19. Chang, H.-C. & Ewing, G. E. Infrared fluorescence from a monolayer of CO on NaCl(100). Phys. Rev. Lett. 65, 2125 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Head-Gordon, M. & Tully, J. C. Vibrational-relaxation on metal surfaces—molecular orbital theory and application to CO/Cu(100). J. Chem. Phys. 96, 3939–3949 (1992).

    Article  CAS  Google Scholar 

  21. Head-Gordon, M. & Tully, J. C. Molecular-dynamics with electronic frictions. J. Chem. Phys. 103, 10137–10145 (1995).

    Article  CAS  Google Scholar 

  22. Krishna, V. & Tully, J. C. Vibrational lifetimes of molecular adsorbates on metal surfaces. J. Chem. Phys. 125, 054706 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Forsblom, M. & Persson, M. Vibrational lifetimes of cyanide and carbon monoxide on noble and transition metal surfaces. J. Chem. Phys. 127, 154303 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Maurer, R. J., Askerka, M., Batista, V. S. & Tully, J. C. Ab-initio tensorial electronic friction for molecules on metal surfaces: Nonadiabatic vibrational relaxation. Phys. Rev. B 94, 115432 (2016).

    Article  Google Scholar 

  25. Golibrzuch, K. et al. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer. J. Phys. Chem. A 117, 8750–8760 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Golibrzuch, K. et al. CO desorption from a catalytic surface: elucidation of the role of steps by velocity-selected residence time measurements. J. Am. Chem. Soc. 137, 1465–1475 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Ogilvie, J. F., Cheah, S.-L., Lee, Y.-P. & Sauer, S. P. A. Infrared spectra of CO in absorption and evaluation of radial functions fro potential energy and electric dipolar moment. Theor. Chem. Acc. 108, 85–97 (2002).

    Article  CAS  Google Scholar 

  28. Rettner, C. T. The search for direct vibrational-excitation in gas-surface collisions of CO with Au(111). J. Chem. Phys. 99, 5481–5489 (1993).

    Article  CAS  Google Scholar 

  29. Barker, J. A. & Auerbach, D. J. Gas surface dynamics, velocity distributions, trapping and residence times. Faraday Discuss. 80, 277–289 (1985).

    Article  Google Scholar 

  30. Hurst, J. E. et al. Observation of direct inelastic-scattering in the presence of trapping-desorption scattering: Xe on Pt(111). Phys. Rev. Lett. 43, 1175–1177 (1979).

    Article  CAS  Google Scholar 

  31. Hurst, J. E., Wharton, L., Janda, K. C. & Auerbach, D. J. Direct inelastic-scattering: Ar from Pt(111). J. Chem. Phys. 78, 1559–1581 (1983).

    Article  CAS  Google Scholar 

  32. Hurst, J. E., Wharton, L., Janda, K. C. & Auerbach, D. J. Trapping–desorption scattering of argon from Pt(111). J. Chem. Phys. 83, 1376–1381 (1985).

    Article  CAS  Google Scholar 

  33. Janda, K. C. et al. Direct measurement of velocity distributions in argon beam–tungsten surface scattering. J. Chem. Phys. 72, 2403–2410 (1980).

    Article  CAS  Google Scholar 

  34. Janda, K. C. et al. Direct inelastic and trapping–desorption scattering of N2 from polycrystalline W—elementary steps in the chemisorption of nitrogen. Surf. Sci. 93, 270–286 (1980).

    Article  CAS  Google Scholar 

  35. Engelhart, D. P., Wagner, R. J. V., Meling, A., Wodtke, A. M. & Schafer, T. Temperature programmed desorption of weakly bound adsorbates on Au(111). Surf. Sci. 650, 11–16 (2016).

    Article  CAS  Google Scholar 

  36. Rettner, C. T., Schweizer, E. K. & Mullins, C. B. Desorption and trapping of argon at a 2H-W(100) surface and a test of the applicability of detailed balance to a nonequilibrium system. J. Chem. Phys. 90, 3800–3813 (1989).

    Article  CAS  Google Scholar 

  37. Shirhatti, P. R., Werdecker, J., Golibrzuch, K., Wodtke, A. M. & Bartels, C. Electron hole pair mediated vibrational excitation in CO scattering from Au(111): incidence energy and surface temperature dependence. J. Chem. Phys. 141, 124704 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Gajdos, M., Eichler, A. & Hafner, J. CO adsorption on close-packed transition and noble metal surfaces: trands from ab-initio calculations. J. Phys. Condens. Matter 16, 1141–1164 (2004).

    Article  CAS  Google Scholar 

  39. Persson, B. N. J. & Persson, M. Vibrational lifetime for CO adsorbed on Cu(100). Solid State Commun. 36, 175–179 (1980).

    Article  CAS  Google Scholar 

  40. Liebsch, A. Screening properties of a metal surface at low frequencies and finite wave vectors. Phys. Rev. Lett. 54, 67–70 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Rohr, K. Cross beam experiment for the scattering of low-energy electrons from methane. J. Phys. B 13, 4897–4905 (1980).

    Article  CAS  Google Scholar 

  42. Huber, K. P. & Herzberg, G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold Company, New York, 1979).

    Book  Google Scholar 

  43. Yurchenko, S. N., Tennyson, J., Barber, R. J. & Thiel, W. Vibrational transition moments of CH4 from first principles. J. Mol. Spectrosc. 291, 69–76 (2013).

    Article  CAS  Google Scholar 

  44. Ran, Q., Matsiev, D., Wodtke, A. M. & Auerbach, D. J. An advanced molecule–surface scattering instrument for study of vibrational energy transfer in gas–solid collisions. Rev. Sci. Instrum. 78, 104104 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Golibrzuch, K. et al. State-to-state time-of-flight measurements of NO scattering from Au (111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer. J. Phys. Chem. A 117, 8750–8760 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Auerbach, D. J. Atomic and Molecular Beam Methods Ch. 14. Vol. 1 (ed. Scoles, G.) (Oxford Univ. Press, New York, NY, 1988).

Download references

Acknowledgements

The authors thank A. Kandratsenka for discussions on CO vibrational lifetime estimation and T. Schäfer for his inputs regarding the CO/Au(111) TPD measurements. The authors acknowledge support from the Deutsche Forschungsgemeinschaft CRC1073 under project A04 and from the Ministerium für Wissenschaft und Kultur Niedersachsen and the Volkswagenstiftung under grant no. INST 186/901-1. A.M.W. and D.J.A. acknowledge support from the Alexander von Humboldt Foundation. D.J.A. acknowledges support from The International Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen. J.G. acknowledges support from the Max Planck – EPFL Center for Molecular Nanoscience and Technology. I.R. and A.M.W. acknowledge support from the Niedersächsisch-Israelische Gemeinschaftsvorhaben under project no. 574 7 022.

Author information

Authors and Affiliations

Authors

Contributions

A.M.W. conceived the study. P.R.S., I.R., K.G., J.W., J.G. and C.B. were involved in designing and conducting the scattering experiments. P.R.S. conducted the final data analysis. J.A. performed the computational study. S.K. performed the IR absorption measurements. A.M.W., D.J.A. and C.B. provided conceptual advice both regarding data analysis and interpretation of the results. A.M.W., P.R.S. and I.R. wrote the main paper. P.R.S. wrote the Supplementary Information with input from J.A. and S.K. All authors discussed the results and their interpretation, and provided inputs for preparing the manuscript.

Corresponding author

Correspondence to Alec M. Wodtke.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Data and analysis, Supplementary Figs. 1–11

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shirhatti, P.R., Rahinov, I., Golibrzuch, K. et al. Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface. Nature Chem 10, 592–598 (2018). https://doi.org/10.1038/s41557-018-0003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0003-1

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing