Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium

Abstract

Barrier epithelial organs face the constant challenge of sealing the interior body from the external environment while simultaneously replacing the cells that contact this environment. New replacement cells—the progeny of basal stem cells—are born without barrier-forming structures such as a specialized apical membrane and occluding junctions. Here, we investigate how new progeny acquire barrier structures as they integrate into the intestinal epithelium of adult Drosophila. We find they gestate their future apical membrane in a sublumenal niche created by a transitional occluding junction that envelops the differentiating cell and enables it to form a deep, microvilli-lined apical pit. The transitional junction seals the pit from the intestinal lumen until differentiation-driven, basal-to-apical remodelling of the niche opens the pit and integrates the now-mature cell into the barrier. By coordinating junctional remodelling with terminal differentiation, stem cell progeny integrate into a functional, adult epithelium without jeopardizing barrier integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The apex of a differentiating enteroblast contacts the SJ of its neighbour enterocytes.
Fig. 2: SJ and apical membrane morphology define six stages of barrier integration.
Fig. 3: Synchronized differentiation drives Su(H)-lacZ+ cells through sequential stages of PAC integration.
Fig. 4: PAC integration involves basally directed growth of a transitional SJ with distinct apical EC–EC and basal PC–EC zones.
Fig. 5: FIB-SEM reveals the 3D ultrastructure of early-stage SJs.
Fig. 6: Cells must form SJs and grow to integrate.
Fig. 7: PACs are intercellular, split-polarity lumens that are sealed off from the gut lumen.

Similar content being viewed by others

Data availability

EM data are available through EMBL-EBI BioStudies under accession number S-BSST946. Source data are provided with this paper. All other data are available from the corresponding author on reasonable request.

References

  1. Guillot, C. & Lecuit, T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340, 1185–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Leblond, C. P. The life history of cells in renewing systems. Am. J. Anat. 160, 114–158 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Liang, J., Balachandra, S., Ngo, S. & O’Brien, L. E. Feedback regulation of steady-state epithelial turnover and organ size. Nature 548, 588–591 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Macara, I. G., Guyer, R., Richardson, G., Huo, Y. & Ahmed, S. M. Epithelial homeostasis. Curr. Biol. 24, R815–R825 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Pellettieri, J. & Alvarado, A. S. Cell turnover and adult tissue homeostasis: from humans to planarians. Annu. Rev. Genet. 41, 83–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Linden, S. K., Sutton, P., Karlsson, N. G., Korolik, V. & McGuckin, M. A. Mucins in the mucosal barrier to infection. Mucosal Immunol. 1, 183–197 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. McGuckin, M. A., Lindén, S. K., Sutton, P. & Florin, T. H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9, 265–278 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Overeem, A. W., Bryant, D. M. & van IJzendoorn, S. C. D. Mechanisms of apical–basal axis orientation and epithelial lumen positioning. Trends Cell Biol. 25, 476–485 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Varadarajan, S., Stephenson, R. E. & Miller, A. L. Multiscale dynamics of tight junction remodeling. J. Cell Sci. 132, jcs229286 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Evans, M. J. & Moller, P. C. Biology of airway basal cells. Exp. Lung Res. 17, 513–531 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Evans, M. J., Plopper, C. G., Van Winkle, L. S. & Fanucchi, M. V. Cellular and molecular characteristics of basal cells in airway epithelium. Exp. Lung Res. 27, 401–415 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Sekiya, K., Futaesaku, Y. & Nakase, Y. Electron microscopic observations on tracheal epithelia of mice infected with Bordetella bronchiseptica. Microbiol. Immunol. 32, 461–472 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Chepko, G. & Dickson, R. B. Ultrastructure of the putative stem cell niche in rat mammary epithelium. Tissue Cell 35, 83–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Chepko, G. & Smith, G. H. Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell 29, 239–253 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Tsujimura, A. et al. Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J. Cell Biol. 157, 1257–1265 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cotsarelis, G., Cheng, S.-Z., Dong, G., Sun, T.-T. & Lavker, R. M. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57, 201–209 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Leung, C. T., Coulombe, P. A. & Reed, R. R. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat. Neurosci. 10, 720–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Korzelius, J. et al. Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells. EMBO J. 33, 2967–2982 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Resnik-Docampo, M. et al. Tricellular junctions regulate intestinal stem cell behaviour to maintain homeostasis. Nat. Cell Biol. 19, 52–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Xu, C. et al. The septate junction Protein Tsp2A restricts intestinal stem cell activity via endocytic regulation of aPKC and hippo signaling. Cell Rep. 26, 670–688.e6 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Jinguji, Y. & Ishikawa, H. Electron microscopic observations on the maintenance of the tight junction during cell division in the epithelium of the mouse small intestine. Cell Struct. Funct. 17, 27–37 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, B. et al. Claudin-18–mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis. J. Clin. Invest. 128, 970–984 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  24. Merzdorf, C. S., Chen, Y.-H. & Goodenough, D. A. Formation of functional tight junctions in Xenopus embryos. Dev. Biol. 195, 187–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Deblandre, G. A., Wettstein, D. A., Koyano-Nakagawa, N. & Kintner, C. A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development 126, 4715–4728 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Stubbs, J. L., Davidson, L., Keller, R. & Kintner, C. Radial intercalation of ciliated cells during Xenopus skin development. Development 133, 2507–2515 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Voiculescu, O., Bertocchini, F., Wolpert, L., Keller, R. E. & Stern, C. D. The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449, 1049–1052 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. McMahon, A., Supatto, W., Fraser, S. E. & Stathopoulos, A. Dynamic analyses of Drosophila gastrulation provide insights into collective cell migration. Science 322, 1546–1550 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Campbell, K., Casanova, J. & Skaer, H. Mesenchymal-to-epithelial transition of intercalating cells in Drosophila renal tubules depends on polarity cues from epithelial neighbours. Mech. Dev. 127, 345–357 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sedzinski, J., Hannezo, E., Tu, F., Biro, M. & Wallingford, J. B. Emergence of an apical epithelial cell surface in vivo. Dev. Cell 36, 24–35 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sedzinski, J., Hannezo, E., Tu, F., Biro, M. & Wallingford, J. B. RhoA regulates actin network dynamics during apical surface emergence in multiciliated epithelial cells. J. Cell Sci. 130, 420–428 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ventura, G. et al. Multiciliated cells use filopodia to probe tissue mechanics during epithelial integration in vivo. Nat. Commun. 13, 6423 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Walck-Shannon, E. & Hardin, J. Cell intercalation from top to bottom. Nat. Rev. Mol. Cell Biol. 15, 34–48 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chen, J., Sayadian, A.-C., Lowe, N., Lovegrove, H. E. & St Johnston, D. An alternative mode of epithelial polarity in the Drosophila midgut. PLoS Biol. 16, e3000041 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  35. Burel, A. et al. A targeted 3D EM and correlative microscopy method using SEM array tomography. Development 145, dev160879 (2018).

    Article  PubMed  Google Scholar 

  36. Kolotuev, I. Positional correlative anatomy of invertebrate model organisms increases efficiency of TEM data production. Microsc. Microanal. 20, 1392–1403 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Lemaitre, B. & Miguel-Aliaga, I. The digestive tract of drosophila melanogaster. Annu Rev. Genet 47, 377–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, J. & St Johnston, D. Epithelial cell polarity during drosophila midgut development. Front. Cell Dev. Biol. 10, 886773 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  39. Furuse, M. & Izumi, Y. Molecular dissection of smooth septate junctions: understanding their roles in arthropod physiology: smooth septate junction-associated proteins. Ann. N. Y. Acad. Sci. 1397, 17–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Jiang, H. & Edgar, B. A. EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136, 483–493 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Micchelli, C. A. & Perrimon, N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Ohlstein, B. & Spradling, A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439, 470–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Bardin, A. J., Perdigoto, C. N., Southall, T. D., Brand, A. H. & Schweisguth, F. Transcriptional control of stem cell maintenance in the Drosophila intestine. Development 137, 705–714 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ohlstein, B. & Spradling, A. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential Notch signaling. Science 315, 988–992 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Perdigoto, C. N., Schweisguth, F. & Bardin, A. J. Distinct levels of Notch activity for commitment and terminal differentiation of stem cells in the adult fly intestine. Development 138, 4585–4595 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. de Navascués, J. et al. Drosophila midgut homeostasis involves neutral competition between symmetrically dividing intestinal stem cells. EMBO J. 31, 2473–2485 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  47. Xiang, J. et al. EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration. Nat. Commun. 8, 15125 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Izumi, Y., Motoishi, M., Furuse, K. & Furuse, M. A tetraspanin regulates septate junction formation in Drosophila midgut. J. Cell Sci. 129, 1155–1164 (2016).

    CAS  PubMed  Google Scholar 

  49. Yanagihashi, Y. et al. Snakeskin, a membrane protein associated with smooth septate junctions, is required for intestinal barrier function in Drosophila. J. Cell Sci. 125, 1980–1990 (2012).

    CAS  PubMed  Google Scholar 

  50. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  PubMed  Google Scholar 

  51. Antonello, Z. A., Reiff, T., Ballesta‐Illan, E. & Dominguez, M. Robust intestinal homeostasis relies on cellular plasticity in enteroblasts mediated by miR‐8–Escargot switch. EMBO J. 34, 2025–2041 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Chen, J., Xu, N., Huang, H., Cai, T. & Xi, R. A feedback amplification loop between stem cells and their progeny promotes tissue regeneration and tumorigenesis. eLife 5, e14330 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  53. Villa, S. E. R., Meng, F. W. & Biteau, B. Zfh2 controls progenitor cell activation and differentiation in the adult Drosophila intestinal absorptive lineage. PLoS Genet. 15, e1008553 (2019).

    Article  CAS  Google Scholar 

  54. Kiehart, D. P., Galbraith, C. G., Edwards, K. A., Rickoll, W. L. & Montague, R. A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149, 471–490 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Jin, Z. et al. The Drosophila ortholog of mammalian transcription factor sox9 regulates intestinal homeostasis and regeneration at an appropriate level. Cell Rep. 31, 107683 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Meng, F. W. & Biteau, B. A Sox transcription factor is a critical regulator of adult stem cell proliferation in the Drosophila intestine. Cell Rep. 13, 906–914 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Meng, F. W., Villa, S. E. R. & Biteau, B. Sox100B regulates progenitor-specific gene expression and cell differentiation in the adult Drosophila intestine. Stem Cell Rep. 14, 226–240 (2020).

    Article  CAS  Google Scholar 

  58. Zhai, Z. et al. Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis. Nat. Commun. 6, 10219 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K. & Davis, R. L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Zhai, Z., Boquete, J.-P. & Lemaitre, B. A genetic framework controlling the differentiation of intestinal stem cells during regeneration in Drosophila. PLoS Genet. 13, e1006854 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  61. Baumann, O. Posterior midgut epithelial cells differ in their organization of the membrane skeleton from other Drosophila epithelia. Exp. Cell. Res. 270, 176–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Tepass, U. & Hartenstein, V. Epithelium formation in the Drosophila midgut depends on the interaction of endoderm and mesoderm. Development 120, 579–590 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Tepass, U. & Hartenstein, V. The development of cellular junctions in the Drosophila embryo. Dev. Biol. 161, 563–596 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Jin, Y. et al. Intestinal stem cell pool regulation in Drosophila. Stem Cell Rep. 8, 1479–1487 (2017).

    Article  CAS  Google Scholar 

  65. Amcheslavsky, A., Ito, N., Jiang, J. & Ip, Y. T. Tuberous sclerosis complex and myc coordinate the growth and division of Drosophila intestinal stem cells. J. Cell Biol. 193, 695–710 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Kapuria, S., Karpac, J., Biteau, B., Hwangbo, D. & Jasper, H. Notch-mediated suppression of TSC2 expression regulates cell differentiation in the drosophila intestinal stem cell lineage. PLoS Genet. 8, e1003045 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Nie, Y. et al. Bunched and madm function downstream of tuberous sclerosis complex to regulate the growth of intestinal stem cells in Drosophila. Stem Cell Rev. Rep. 11, 813–825 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Quan, Z., Sun, P., Lin, G. & Xi, R. TSC1/2 regulates intestinal stem cell maintenance and lineage differentiation through Rheb–TORC1–S6K but independently of nutritional status or Notch regulation. J. Cell Sci. 126, 3884–3892 (2013).

    CAS  PubMed  Google Scholar 

  69. Gilbert, T. & Rodriguez-Boulan, E. Induction of vacuolar apical compartments in the Caco-2 intestinal epithelial cell line. J. Cell Sci. 100, 451–458 (1991).

    Article  PubMed  Google Scholar 

  70. Taniguchi, K. et al. An apicosome initiates self-organizing morphogenesis of human pluripotent stem cells. J. Cell Biol. 216, 3981–3990 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Vega-Salas, D. E. Exocytosis of vacuolar apical compartment (VAC): a cell–cell contact controlled mechanism for the establishment of the apical plasma membrane domain in epithelial cells. J. Cell Biol. 107, 1717–1728 (1988).

    Article  CAS  PubMed  Google Scholar 

  72. Blasky, A. J., Mangan, A. & Prekeris, R. Polarized protein transport and lumen formation during epithelial tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 31, 575–591 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Datta, A., Bryant, D. M. & Mostov, K. E. Molecular regulation of lumen morphogenesis. Curr. Biol. 21, R126–R136 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. O’Brien, L. E., Zegers, M. M. P. & Mostov, K. E. Opinion: building epithelial architecture: insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3, 531–537 (2002).

    Article  PubMed  Google Scholar 

  75. Lowery, L. A., Rienzo, G. D., Gutzman, J. H. & Sive, H. Characterization and classification of zebrafish brain morphology mutants. Anat. Rec. 292, 94–106 (2009).

    Article  Google Scholar 

  76. Wang, X. et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495–500 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Chen, J. & St Johnston, D. De novo apical domain formation inside the Drosophila adult midgut epithelium. eLife 11, e76366 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  78. Reiff, T. et al. Notch and EGFR regulate apoptosis in progenitor cells to ensure gut homeostasis in Drosophila. EMBO J. 38, e101346 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Endo, Y. & Nishiitsutsuji-Uwo, J. Fine structure of developing endocrine cells and columnar cells in cockroach midgut. Biomed. Res. 3, 637–644 (1982).

    Article  Google Scholar 

  80. Hu, X. et al. Discovery of midgut genes for the RNA interference control of corn rootworm. Sci. Rep. 6, 30542 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Rost-Roszkowska, M. M., Kszuk-Jendrysik, M., Marchewka, A. & Poprawa, I. Fine structure of the midgut epithelium in the millipede Telodeinopus aoutii (Myriapoda, Diplopoda) with special emphasis on epithelial regeneration. Protoplasma 255, 43–55 (2018).

  82. Caccia, S., Casartelli, M. & Tettamanti, G. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res. 377, 505–525 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Hagiwara, H., Ohwada, N. & Fujimoto, T. Intracytoplasmic lumina in human oviduct epithelium. Ultrastruct. Pathol. 21, 163–172 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Boysen, M. & Reith, A. Intracytoplasmic lumina with and without cilia in both normal and pathologically altered nasal mucosa. Ultrastruct. Pathol. 1, 477–485 (1980).

    Article  CAS  PubMed  Google Scholar 

  85. Colony, P. C. & Neutra, M. R. Epithelial differentiation in the fetal rat colon: I. Plasma membrane phosphatase activities. Dev. Biol. 97, 349–363 (1983).

    Article  CAS  PubMed  Google Scholar 

  86. Trier, J. S. & Moxey, P. C. in Ciba Foundation Symposium 70Development of Mammalian Absorptive Processes (eds Elliott, K. & Whelan, J.) 3–29 (John Wiley & Sons, 1979).

  87. DeMaio, L. et al. Characterization of mouse alveolar epithelial cell monolayers. Am. J. Physiol. Lung Cell. Mol. Physiol. 296, L1051–L1058 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Fleming, E. S. et al. Planar spindle orientation and asymmetric cytokinesis in the mouse small intestine. J. Histochem. Cytochem. 55, 1173–1180 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. McKinley, K. L. et al. Cellular aspect ratio and cell division mechanics underlie the patterning of cell progeny in diverse mammalian epithelia. eLife 7, e36739 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  90. O’Brien, L. E., Soliman, S. S., Li, X. & Bilder, D. Altered modes of stem cell division drive adaptive intestinal growth. Cell 147, 603–614 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  91. Bobinnec, Y., Marcaillou, C., Morin, X. & Debec, A. Dynamics of the endoplasmic reticulum during early development of Drosophila melanogaster. Cell Motil. 54, 217–225 (2003).

    Article  Google Scholar 

  92. Buchon, N. et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep. 3, 1725–1738 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Zhu, M. et al. MISP is a novel Plk1 substrate required for proper spindle orientation and mitotic progression. J. Cell Biol. 200, 773–787 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Morales, E. A., Arnaiz, C., Krystofiak, E. S., Zanic, M. & Tyska, M. J. Mitotic Spindle Positioning (MISP) is an actin bundler that selectively stabilizes the rootlets of epithelial microvilli. Cell Rep. 39, 110692 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Kolotuev, I., Schwab, Y. & Labouesse, M. A precise and rapid mapping protocol for correlative light and electron microscopy of small invertebrate organisms. Biol. Cell 102, 121–132 (2010).

    Article  Google Scholar 

  96. Daniel, E. et al. Coordination of septate junctions assembly and completion of cytokinesis in proliferative epithelial tissues. Curr. Biol. 28, 1380–1391.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Kolotuev, I. & Micheva, K. D. in Correlative Imaging (eds Verkade, P. & Collinson, L.) 81–98 (John Wiley & Sons, Ltd., 2019).

  98. Kizilyaprak, C., Longo, G., Daraspe, J. & Humbel, B. M. Investigation of resins suitable for the preparation of biological sample for 3-D electron microscopy. J. Struct. Biol. 189, 135–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Bardin, D. Bilder, N. Buchon, J. de Navascues, M. Furuse, Y. Inoue, H. Jasper, S. Siegrist, N. Tapon and Drosophila stock centres (Bloomington Drosophila Stock Center (NIH P40OD018537), Vienna Drosophila Resource Center (Dietzl et al., 2007), Kyoto Drosophila Genomics and Genetic Resources) for fly stocks; M. Furuse, S. Russell and X. Yang for antibodies; M. Petersen and E. Smith for illustrations; S. Xie for Python support; and J. Mulholland and K. Lee for microscopy support. Confocal microscopy was performed at the Stanford Beckman Cell Sciences Imaging Facility (NIH 1S10OD01058001A1, NIH 1S10OD010580). We thank D. Bryant, T. Reiff, D. St. Johnston, J. Chen and members of the O’Brien lab for invaluable discussions. A. Galenza is supported by a Canadian Institutes of Health Research Fellowship MFE 181906. P.M.R. was supported by a Stanford Bio-X Bowes Graduate Fellowship, an EMBO Short-Term Travelling Fellowship, and a Stanford DARE Graduate Fellowship (Diversifying Academia, Recruiting Excellence). The authors acknowledge the financial support by the Faculty of Biology and Medicine of the University of Lausanne and of the Swiss National Science Foundation, R’Equip Grant 316030_128692. This work was supported by NIH R01GM116000-01A1, NIH R35GM141885-01, NIH 1R01DK128485-01A1 and ACS RSG-17-167-01 to L.E.O. L.E.O. is an investigator of the Chan-Zuckerberg Biohub.

Author information

Authors and Affiliations

Authors

Contributions

P.M.-R. and L.E.O. conceived and designed the initial study. A. Galenza and L.E.O. conceived and designed the revised study. P.M.-R. and Y.-H.S. performed and analysed confocal microscopy experiments in the initial study. A. Galenza and Y.-H.S. performed and analysed confocal microscopy experiments in the revised study. I.K. performed and analysed EM experiments with support from P.M.-R., B.M.H. and C.K., and using guts dissected and fixed by P.M.-R. I.K., P.M.-R., Y.-H.S., A. Galenza and L.A.-A. segmented EM data. A. Guichet and A.D. cloned Meduse and analysed its localization in egg chambers. Y.-H.S. mapped the site of the A142 insertion with technical guidance from J.-M.K. I.K. and B.M.H. supervised EM portions of the project. A. Galenza, J.-M.K. and L.E.O. wrote and revised the manuscript. P.M.-R., Y.-H.S., B.M.H. and I.K. commented on the manuscript. L.E.O. supervised the project.

Corresponding author

Correspondence to Lucy Erin O’Brien.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Barry Thompson, Bruce Edgar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Same images as Fig. 1b–g, without drawn cell outlines.

a-f, Images are representative of 119 stem cells and 125 enteroblasts across 5 guts. Scale bars, 5 μm, Full genotypes in Supplementary Table 1.

Extended Data Fig. 2 Same images as Fig. 2b,c, showing Su(H)-lacZ expression (b-galactosidase immunostain).

a-b, Multi-channel and β-galactosidase channel view of the same images as Fig. 2b,c. The presence of β-galactosidase in Stage 3 and Stage 4 cells demonstrates that these cells derived recently from enteroblasts. During acquisition of the Stage 3 and 4 images, the gain was increased compared to Stages 1 and 2 to visualize lower levels of β-galactosidase. Arrows in (b) point to a Stage 1 enteroblast next to the Stage 4 pre-enterocyte; at the higher gain necessary to visualize β-galactosidase in the Stage 4 pre-enterocyte, β-galactosidase intensity in the Stage 1 enteroblast is overexposed. Panels (a,b) are representative images collected from 40 guts in 2 independent experiments. Images are projections of short confocal stacks. Scale bars, 5 μm. Full genotypes in Supplementary Table 1.

Extended Data Fig. 3 Criteria for identification of integration stage for differentiating progenitor cells.

Integration stage is assessed by localization of two key markers: (1) apical membrane, and (2) SJ. Cartoons display marker localization for Stages 0–5. Apical membrane, cyan; SJEC-EC, yellow; SJPC-EC, orange; progenitor cell (Su(H)-lacZ+ enteroblast or pre-enterocyte), blue; mature neighbor enterocytes, gray.

Extended Data Fig. 4 The A142 splice trap transposon is inserted into CG2556/meduse, the Drosophila homolog of the mammalian actin bundling protein MISP.

a, Genomic location of the splice trap transposon in the A142 line. The insertion was mapped by inverse PCR and genomic PCR to the large first intron of CG2556, approximately 10.6 kb downstream of the splice site in Exon 1. The transposon is inserted in the proper orientation to capture transcripts from CG2556, which would result in an N-terminal GFP tag on the nearly undisrupted protein (Exon 1 encodes only 7 amino acids, including the initiator Met). CG2556 was previously identified as a homolog of the mammalian Mitotic Interactor and Substrate of PLK1 (aka Mitotic Spindle Positioning, MISP)93. MISP is an actin bundling protein that localizes to the rootlets of mouse and human intestinal microvilli94. The tentacular appearance of the fusion protein in oocytes prompted us to name the gene meduse (mdu). b, Mdu::GFP (cyan) co-localizes with cortical actin filaments (magenta, Rhodamin-phalloidin) in Stage 10 oocytes. Image is representative of 10 oocytes. c, Latrunculin B (LatB) treatment disrupts cortical actin filaments in the oocyte and leads to abrogation of the oocyte Mdu::GFP signal. Note that LatB does not disrupt actin in ring canals; localization of Mdu::GFP to ring canals is visible in Panels (c) and (c′). Image is representative of 10 oocytes. Full genotype in Supplementary Table 1.

Extended Data Fig. 5 PAC integration affects neighboring enterocyte-enterocyte SJ dynamics.

Volumetric images were analyzed from midguts that expressed Su(H)-lacZ and an apical marker (moeABD::GFP or mdu::GFP) and that were immunostained for β-galactosidase and an SJ marker (Ssk or Tsp2a). Full genotypes in Supplementary Table 1. a, Cartoon of the SJ parameters measured at each integration stage for progenitor-associated SJ: λ - SJEC-EC length, ψ - SJPC-EC length, and δ - distance from the basal edge of the SJ to the basal epithelium; and parameters measured for neighbor EC-EC SJ: σ - SJEC-EC length, and δ - distance from the basal edge of the SJ to the basal epithelium. Apical membrane, cyan; progenitor SJEC-EC, yellow; progenitor SJPC-EC, orange; progenitor cell (Su(H)-lacZ+ enteroblast or pre-enterocyte), blue; mature neighbor enterocytes, gray; neighbor SJEC-EC, brown. See Methods for measurement details. In Stage 4 depiction, dashed yellow line represents SJEC-EC that is out-of-plane of the drawing. b-c, Raincloud plots (violin plot on left; boxplot on right) show the indicated measurements for SJs associated with Stage 1–5 progenitor cells (blue; n=30 SJs for each stage) and the SJs associated with neighboring enterocytes (gray; n=60 SJs for each stage, two per each integrating progenitor). (b), Total length of SJ associated with progenitor cell (λ + ψ) compared to length of SJ between neighbor EC-EC (σ). (c), Distance from basal edge of the SJ to the basal epithelium (δ). Boxplots display median as center line, the bounds of the box represent the first and third quartiles, minimum and maximum values shown by whiskers, diamonds indicate outliers. (N=7 guts; n=150 progenitor cells).

Source data

Extended Data Fig. 6 High resolution view of FIB-SEM section shown in Fig. 5d.

30 nm-thick sections were cut with a gallium ion beam at 30 keV and 770 pA. Images were taken with the electron beam at 2 keV, 0.8 nA, 2 μm working distance, 20 μs dwell time, 6144x4096 pixel frame size. Pixel size 9.7 nm. Scale bar, 10 μm. Full genotype in Supplementary Table 1.

Extended Data Fig. 7 EC density is unaffected by SJ knockdown but increases following growth inhibition.

a-d, Knockdown of SJ components in enteroblasts does not affect enterocyte density. (a) Boxplot shows the enterocyte density in R4 region of midguts (N=5 guts per genotype). Boxplots display median as center line, the bounds of the box represent the first and third quartiles, minimum and maximum values shown by whiskers. Each data point represents one midgut. Su(H)ts>GFP versus Su(H)ts>sskRNAi (two-tailed Student’s t-test, p=0.8193), Su(H)ts>GFP versus Su(H)ts>Tsp2aRNAi (two-tailed Student’s t-test, p=0.5718). (b-d), Representative immunofluorescent images of gut epithelia from (a) Su(H)ts>GFP, (b) Su(H)ts>sskRNAi, GFP, and (c) Su(H)ts>Tsp2aRNAi, GFP. Guts immunostained for GFP (blue), the SJ marker Coracle (red), and nuclei (DAPI, grayscale). e-g, Growth inhibition in enteroblasts increases enterocyte density. (e) Boxplot shows the enterocyte density in R4 region of midguts (Su(H)ts>+, N=4 guts; Su(H)ts>tsc1/2, N=2 guts). Boxplots display median as center line, the bounds of the box represent the first and third quartiles, minimum and maximum values shown by whiskers. Each data point represents one midgut. Su(H)ts>+ versus Su(H)ts>tsc1/2 (two-tailed Student’s t-test, p=0.0030). (f,g), Representative immunofluorescent images of gut epithelia from (f) Su(H)ts>+ and (g) Su(H)ts>tsc1/2. Guts immunostained for GFP (blue), the SJ marker Coracle (red), and nuclei (DAPI, grayscale). Scale bars, 25 μm. Full genotypes are in Supplementary Table 1.

Source data

Extended Data Fig. 8 Mechanisms of epithelial cell incorporation.

Three mechanisms to incorporate stem cell progeny into a mature epithelium are shown. Apical membrane (cyan), occluding junction (red), differentiating cell (blue), terminally-differentiated cells (gray), and stem cells (white). a, Symmetric inheritance. Stem cells possess occluding junctions, which are inherited by their progeny. b, Radial intercalation. Stem cells lack occluding junctions. As stem cell progeny differentiate, they grow apically, wedging themselves between terminally-differentiated cells. When they reach the occluding junction of the epithelium, the differentiating cell forms occluding junctions with its neighbors. These junctions expand radially in a ring around the cell’s nascent apical membrane. c, Pre-assembled Apical Compartment (PAC) integration. Stem cells lack occluding junctions Differentiating cells create a transient, occluding junction niche that supports development of the new cell’s future, lumen-facing apical surface. This Pre-assembled Apical Compartment (PAC) is formed from deep, apical plasma membrane pit in the differentiating cell that is covered by overlying mature cells. As the new cell grows and differentiates, the transitional junction mediates a basal-to-apical neighbor exchange between the new cell and mature cells that exposes the PAC to the gut lumen and seamlessly integrates the new cell into the epithelial barrier. d, PACs are asymmetric structures with split apical/basolateral character. The pre-enterocyte’s apical membrane pit accounts for most of the PAC’s surface area.

Supplementary information

Reporting Summary

Supplementary Table 1

Supplementary Table 1. List of genotypes of flies used in each figure panel. Supplementary Table 2. Reagents and resources. Supplementary Table 3. Antibody validation.

360° confocal reconstruction of a stage 3 pre-enterocyte shows structure of the PAC (related to Fig. 2b). Video shows reconstructed 360° view of a stage 3 pre-enterocyte, labelled by Su(H)-driven β–galactosidase. The pre-enterocyte is surrounded by two mature enterocytes, and a pair of small, basal progenitor cells is visible between the pre-enterocyte and one of the mature enterocytes. The apical marker MoeABD::GFP outlines the lumenal-apical surface of the mature enterocytes, the PAC in the pre-enterocyte, and the entire cortex of the progenitor cells. The SJ protein Tetraspanin2A (Tsp2a) forms a convex shroud that covers the apex of the pre-enterocyte. Nuclei are labelled with DAPI. Full genotype in Supplementary Table 1.

CLEM, FIB-SEM dataset and animated volumetric rendering of stage 1 enteroblast, neighbour enterocytes and nascent transitional SJ (related to Fig. 5b,c). CLEM image and tomographic reconstruction of Stage 1 enteroblast from a Su(H)-GFP:nls midgut. Volume reconstructed from 30 serial sections. Sections were cut with a gallium ion beam at 10 kV, spot size 5, pixel frame size 4,096 × 4,096, pixel dwell time 10 μs, pixel size 8.7 nm, slice thickness, 150 nm, volume of reconstruction 35.6 μm × 35.6 μm × 4.5 μm. Full genotype in Supplementary Table 1.

FIB-SEM dataset and animated volumetric rendering of stage 2 enteroblast, neighbour cells and transitional SJ (related to Fig. 5d,e). Tomographic reconstruction of stage 2 enteroblast from 415 serial ultrathin FIB-SEM sections, including the image shown in Fig. 5d and Extended Data Fig. 6. Volume of reconstruction, 55 μm × 36.6 μm × 12.3 μm. Slice thickness, 30 nm. Full genotype in Supplementary Table 1.

3D ultrastructure of PAC, PAC precursor and their associated pre-enterocyte (related to Fig. 7a–d). Tomographic reconstruction of 200 serial FIB-SEM images, including a cropped version of the image shown in Fig. 7a. Rotation of 360° reveals the ellipsoid and allantoid shapes of the PAC and PAC precursor, respectively, and also reveals holes in the SJ in which the pre-enterocyte and enterocyte membranes have separated to form the intercellular lumens. Volume of reconstruction: 40.2 μm × 23.9 μm × 8 μm. Slice thickness, 40 nm. Full genotype in Supplementary Table 1.

Source data

Source Data Fig. 1

Source data for Fig. 1h.

Source Data Fig. 2

Source data for Fig. 2d.

Source Data Fig. 3

Source data for Fig. 3d.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 6

Source data for Fig. 6a,f.

Source Data Extended Data Fig. 5

Source data for Extended Data Fig. 5.

Source Data Extended Data Fig. 7

Source data for Extended Data Fig. 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galenza, A., Moreno-Roman, P., Su, YH. et al. Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium. Nat Cell Biol 25, 658–671 (2023). https://doi.org/10.1038/s41556-023-01116-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-023-01116-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing