Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

GENOME EDITING

Base editing goes into hyperdrive

CRISPR base editors can induce single-base-pair changes in the genome, although they are often inefficient. A study now shows that fusion of the DNA-binding domain of RAD51 to base editors enhances both the efficiency and the targeting range of optimized enzymes. These ‘hyper-editors’ offer effective tools for disease modeling and gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enhanced efficiency and expanded editing range of hyper-base-editing enzymes engineered to include a non-specific ssDNA-binding domain of the human RAD51 protein.

References

  1. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gaudelli, N. M. et al. Nature 551, 464–471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rees, H. A. & Liu, D. R. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schatoff, E. M., Paz Zafra, M. & Dow, L. E. Methods 164–165, 100–108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang, X. et al. Nat. Cell Biol. https://doi.org/10.1038/s41556-020-0518-8 (2020).

  6. Koblan, L. W. et al. Nat. Biotechnol. 36, 843–846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, X. et al. Nat. Biotechnol. 36, 946–949 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Kim, Y. B. et al. Nat. Biotechnol. 35, 371–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gehrke, J. M. et al. Nat. Biotechnol. 36, 977–982 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zafra, M. P. et al. Nat. Biotechnol. 36, 888–893 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang, W. et al. Cell Res. 28, 855–861 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hess, G. T. et al. Nat. Methods 13, 1036–1042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martyn, G. E. et al. Nat. Genet. 50, 498–503 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Dedoussis, G. V., Sinopoulou, K., Gyparaki, M. & Loutradis, A. Eur. J. Haematol. 65, 93–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Wienert, B., Martyn, G. E., Funnell, A. P. W., Quinlan, K. G. R. & Crossley, M. Trends Genet. 34, 927–940 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas E. Dow.

Ethics declarations

Competing interests

L.E.D. is an inventor on a patent that describes base-editing enzymes with increased efficiency and editing range: patent application PCT/US2019/040358 (filed 2 July 2019), international publication number WO2020/033083 (publication date 13 February 2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katti, A., Dow, L.E. Base editing goes into hyperdrive. Nat Cell Biol 22, 617–618 (2020). https://doi.org/10.1038/s41556-020-0521-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-020-0521-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing