Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

STEM CELLS

Bridging naïve and primed pluripotency

Pluripotent cells generate all types of cells in the body and have largely been classified dichotomously into two types: naïve and primed. Arguing against a binary classification system, a study now discovers a unique transition state between naïve and primed pluripotency and describes the signals that control this transition.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A continuum of pluripotent states in the early mouse embryo.

References

  1. Loh, K. M., Lim, B. & Ang, L. T. Physiol. Rev. 95, 245–295 (2015).

    Article  Google Scholar 

  2. Nichols, J. & Smith, A. Cell Stem Cell 4, 487–492 (2009).

    Article  CAS  Google Scholar 

  3. Brons, I. G. M. et al. Nature 448, 191–195 (2007).

    Article  CAS  Google Scholar 

  4. Tesar, P. J. et al. Nature 448, 196–199 (2007).

    Article  CAS  Google Scholar 

  5. Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S. & Saitou, M. Cell 146, 519–532 (2011).

    Article  CAS  Google Scholar 

  6. Neagu, A. et al. Nat. Cell Biol. https://doi.org/10.1038/s41556-020-0508-x (2020).

  7. Cornacchia, D. et al. Cell Stem Cell 25, 120–136.e10 (2019).

    Article  CAS  Google Scholar 

  8. Du, P. et al. Cell Stem Cell 22, 851–864.e5 (2018).

    Article  CAS  Google Scholar 

  9. Kalkan, T. et al. Development 144, 1221–1234 (2017).

    Article  CAS  Google Scholar 

  10. Bedzhov, I. & Zernicka-Goetz, M. Cell 156, 1032–1044 (2014).

    Article  CAS  Google Scholar 

  11. Pelton, T. A., Sharma, S., Schulz, T. C., Rathjen, J. & Rathjen, P. D. J. Cell Sci. 115, 329–339 (2002).

    CAS  PubMed  Google Scholar 

  12. Zheng, Y. et al. Nature 573, 421–425 (2019).

    Article  CAS  Google Scholar 

  13. Clevers, H., Loh, K. M. & Nusse, R. Science 346, 1248012 (2014).

    Article  Google Scholar 

  14. Loh, K. M. et al. Cell 166, 451–467 (2016).

    Article  CAS  Google Scholar 

  15. Varol, C., Mildner, A. & Jung, S. Annu. Rev. Immunol. 33, 643–675 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle M. Loh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dundes, C.E., Loh, K.M. Bridging naïve and primed pluripotency. Nat Cell Biol 22, 513–515 (2020). https://doi.org/10.1038/s41556-020-0509-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-020-0509-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing