Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intergenerational and transgenerational epigenetic inheritance in animals

Abstract

Animals transmit not only DNA but also other molecules, such as RNA, proteins and metabolites, to their progeny via gametes. It is currently unclear to what extent these molecules convey information between generations and whether this information changes according to their physiological state and environment. Here, we review recent work on the molecular mechanisms by which ‘epigenetic’ information is transmitted between generations over different timescales, and the importance of this information for development and physiology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mechanisms of transfer of information about ancestral environment or physiology over generations.
Fig. 2: Small RNA pathways can direct histone methylation and DNA methylation to repress specific loci.

References

  1. 1.

    Conrad, D. F. et al. Variation in genome-wide mutation rates within and between human families. Nat. Genet. 43, 712–714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Skinner, M. K. What is an epigenetic transgenerational phenotype?: F3 or F2. Reprod. Toxicol. 25, 2–6 (2008).

    CAS  PubMed  Google Scholar 

  3. 3.

    Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Deans, C. & Maggert, K. A. What do you mean, “epigenetic”? Genetics 199, 887–896 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ptashne, M. Epigenetics: core misconcept. Proc. Natl Acad. Sci. USA 110, 7101–7103 (2013).

    CAS  PubMed  Google Scholar 

  6. 6.

    Rando, O. J. Daddy issues: paternal effects on phenotype. Cell 151, 702–708 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rando, O. J. & Verstrepen, K. J. Timescales of genetic and epigenetic inheritance. Cell 128, 655–668 (2007).

    CAS  PubMed  Google Scholar 

  8. 8.

    Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS  Google Scholar 

  9. 9.

    Ashe, A. et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88–99 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bagijn, M. P. et al. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 337, 574–578 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Luteijn, M. J. et al. Extremely stable Piwi-induced gene silencing in Caenorhabditis elegans. EMBO J. 31, 3422–3430 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Fridmann-Sirkis, Y. et al. Delayed development induced by toxicity to the host can be inherited by a bacterial-dependent, transgenerational effect. Front. Genet. 5, 27 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Dietz, D. M. et al. Paternal transmission of stress-induced pathologies. Biol. Psychiatry 70, 408–414 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Rando, O. J. & Simmons, R. A. I’m eating for two: parental dietary effects on offspring metabolism. Cell 161, 93–105 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Pembrey, M. E. et al. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166 (2006).

    PubMed  Google Scholar 

  17. 17.

    Veenendaal, M. V. E. et al. Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG 120, 548–554 (2013).

    CAS  PubMed  Google Scholar 

  18. 18.

    Zambrano, E. et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J. Physiol. 566, 225–236 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Anderson, L. M. et al. Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 22, 327–331 (2006).

    CAS  PubMed  Google Scholar 

  20. 20.

    Jimenez-Chillaron, J. C. et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 58, 460–468 (2008).

    PubMed  Google Scholar 

  21. 21.

    Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Pentinat, T., Ramon-Krauel, M., Cebria, J., Diaz, R. & Jimenez-Chillaron, J. C. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology 151, 5617–5623 (2010).

    CAS  PubMed  Google Scholar 

  23. 23.

    Ng, S.-F. et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).

    CAS  PubMed  Google Scholar 

  24. 24.

    McPherson, N. O. et al. When two obese parents are worse than one! Impacts on embryo and fetal development. Am. J. Physiol. Endocrinol. Metab. 309, E568–E581 (2015).

    CAS  PubMed  Google Scholar 

  25. 25.

    Huypens, P. et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat. Genet. 48, 497–499 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Öst, A. et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159, 1352–1364 (2014).

    PubMed  Google Scholar 

  27. 27.

    Miersch, C. & Döring, F. Paternal dietary restriction affects progeny fat content in Caenorhabditis elegans. IUBMB Life 64, 644–648 (2012).

    CAS  PubMed  Google Scholar 

  28. 28.

    Tauffenberger, A. & Parker, J. A. Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans. PLoS Genet. 10, e1004346 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Figueroa-Colon, R., Arani, R. B., Goran, M. I. & Weinsier, R. L. Paternal body fat is a longitudinal predictor of changes in body fat in premenarcheal girls. Am. J. Clin. Nutr. 71, 829–834 (2000).

    CAS  PubMed  Google Scholar 

  30. 30.

    Valtonen, T. M., Kangassalo, K., Pölkki, M. & Rantala, M. J. Transgenerational effects of parental larval diet on offspring development time, adult body size and pathogen resistance in Drosophila melanogaster. PLoS ONE 7, e31611 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Vijendravarma, R. K., Narasimha, S. & Kawecki, T. J. Effects of parental larval diet on egg size and offspring traits in Drosophila. Biol. Lett 6, 238–241 (2010).

    PubMed  Google Scholar 

  32. 32.

    Hibshman, J. D., Hung, A. & Baugh, L. R. Maternal diet and insulin-like signaling control intergenerational plasticity of progeny size and starvation resistance. PLoS Genet. 12, e1006396 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Perez, M. F., Francesconi, M., Hidalgo-Carcedo, C. & Lehner, B. Maternal age generates phenotypic variation in Caenorhabditis elegans. Nature 552, 106–109 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Stern, S. et al. Reduction in maternal Polycomb levels contributes to transgenerational inheritance of a response to toxic stress in flies. J. Physiol. 592, 2343–2355 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Crofton, A. E., Cartwright, E. L., Feitzinger, A. A. & Lott, S. E. Effect of larval nutrition on maternal mRNA contribution to the Drosophila egg. G3 (Bethesda) 8, 1933–1941 (2018).

    Google Scholar 

  36. 36.

    Tian, X., Anthony, K., Neuberger, T. & Diaz, F. J. Preconception zinc deficiency disrupts postimplantation fetal and placental development in mice. Biol. Reprod. 90(83), 81–12 (2014).

    Google Scholar 

  37. 37.

    Padmanabhan, N. et al. Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155, 81–93 (2013).

    CAS  PubMed  Google Scholar 

  38. 38.

    Sharma, U. & Rando, O. J. Metabolic inputs into the epigenome. Cell Metab. 25, 544–558 (2017).

    CAS  PubMed  Google Scholar 

  39. 39.

    Cropley, J. E., Suter, C. M., Beckman, K. B. & Martin, D. I. Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc. Natl Acad. Sci. USA 103, 17308–17312 (2006).

    CAS  PubMed  Google Scholar 

  40. 40.

    Dominguez-Salas, P. et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun. 5, 3746 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146–154.e4 (2018).

    CAS  PubMed  Google Scholar 

  42. 42.

    Perez-Muñoz, M. E., Arrieta, M.-C., Ramer-Tait, A. E. & Walter, J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5, 48 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Peters, J. The role of genomic imprinting in biology and disease: an expanding view. Nat. Rev. Genet. 15, 517–530 (2014).

    CAS  Google Scholar 

  45. 45.

    Radford, E. J. et al. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Martínez, D. et al. In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation. Cell Metab. 19, 941–951 (2014).

    PubMed  Google Scholar 

  47. 47.

    Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl Acad. Sci. USA 111, 1873–1878 (2014).

    CAS  PubMed  Google Scholar 

  48. 48.

    Soubry, A. et al. Obesity-related DNA methylation at imprinted genes in human sperm: results from the TIEGER study. Clin. Epigenetics 8, 51 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Donkin, I. et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab. 23, 369–378 (2016).

    CAS  PubMed  Google Scholar 

  50. 50.

    Feng, S., Jacobsen, S. E. & Reik, W. Epigenetic reprogramming in plant and animal development. Science 330, 622–627 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Shea, J. M. et al. Genetic and epigenetic variation, but not diet, shape the sperm methylome. Dev. Cell 35, 750–758 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Capuano, F., Mülleder, M., Kok, R., Blom, H. J. & Ralser, M. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal. Chem. 86, 3697–3702 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Simpson, V. J., Johnson, T. E. & Hammen, R. F. Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging. Nucleic Acids Res. 14, 6711–6719 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Greer, E. L. et al. A histone methylation network regulates transgenerational epigenetic memory in C. elegans. Cell Rep. 7, 113–126 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Luo, G.-Z., Blanco, M. A., Greer, E. L., He, C. & Shi, Y. DNA N 6-methyladenine: a new epigenetic mark in eukaryotes? Nat. Rev. Mol. Cell Biol. 16, 705–710 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Chen, Q., Yan, W. & Duan, E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat. Rev. Genet. 17, 733–743 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Haussecker, D. et al. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673–695 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Schorn, A. J., Gutbrod, M. J., LeBlanc, C. & Martienssen, R. LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61–71.e11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Maute, R. L. et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl Acad. Sci. USA 110, 1404–1409 (2013).

    CAS  PubMed  Google Scholar 

  61. 61.

    Kuscu, C. et al. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer independent manner. RNA 24, 1093–1105 (2018).

    CAS  PubMed  Google Scholar 

  62. 62.

    Peng, H. et al. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res. 22, 1609–1612 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).

    CAS  PubMed  Google Scholar 

  64. 64.

    Schuster, A., Skinner, M. K. & Yan, W. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. Environ. Epigenet. 2, dvw001 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S. & Bale, T. L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 33, 9003–9012 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Dickson, D. A. et al. Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress. Transl Psychiatry 8, 101 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Rassoulzadegan, M. et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474 (2006).

    CAS  PubMed  Google Scholar 

  69. 69.

    Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).

    CAS  PubMed  Google Scholar 

  70. 70.

    Grandjean, V. et al. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci. Rep. 5, 18193 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Zhang, Y. et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat. Cell Biol. 20, 535–540 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Benito, E. et al. RNA-dependent intergenerational inheritance of enhanced synaptic plasticity after environmental enrichment. Cell Rep. 23, 546–554 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Rodgers, A. B., Morgan, C. P., Leu, N. A. & Bale, T. L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl Acad. Sci. USA 112, 13699–13704 (2015).

    CAS  PubMed  Google Scholar 

  74. 74.

    Kiani, J. et al. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet. 9, e1003498 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Conine, C. C., Sun, F., Song, L., Rivera-Pérez, J. A. & Rando, O. J. Small RNAs gained during epididymal transit of sperm are essential for embryonic development in mice. Dev. Cell 46, 470–480.e3 (2018).

    CAS  PubMed  Google Scholar 

  76. 76.

    Hammoud, S. S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Wu, S.-F., Zhang, H. & Cairns, B. R. Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Res. 21, 578–589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Gaydos, L. J., Wang, W. & Strome, S. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science 345, 1515–1518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Rechtsteiner, A. et al. The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genet. 6, e1001091 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Furuhashi, H. et al. Trans-generational epigenetic regulation of C. elegans primordial germ cells. Epigenetics Chromatin 3, 15 (2010).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Tabuchi, T. M. et al. Caenorhabditis elegans sperm carry a histone-based epigenetic memory of both spermatogenesis and oogenesis. Nat. Commun. 9, 4310 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–371 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Alcazar, R. M., Lin, R. & Fire, A. Z. Transmission dynamics of heritable silencing induced by double-stranded RNA in Caenorhabditis elegans. Genetics 180, 1275–1288 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Rechavi, O., Minevich, G. & Hobert, O. Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 147, 1248–1256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Schott, D., Yanai, I. & Hunter, C. P. Natural RNA interference directs a heritable response to the environment. Sci. Rep. 4, 7387 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Klosin, A. & Lehner, B. Mechanisms, timescales and principles of trans-generational epigenetic inheritance in animals. Curr. Opin. Genet. Dev. 36, 41–49 (2016).

    CAS  PubMed  Google Scholar 

  87. 87.

    Grishok, A., Tabara, H. & Mello, C. C. Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494–2497 (2000).

    CAS  PubMed  Google Scholar 

  88. 88.

    Chapman, E. J. & Carrington, J. C. Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet. 8, 884–896 (2007).

    CAS  PubMed  Google Scholar 

  89. 89.

    Guang, S. et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 465, 1097–1101 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Gu, S. G. et al. Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat. Genet. 44, 157–164 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Mao, H. et al. The Nrde pathway mediates small-RNA-directed histone H3 Lysine 27 trimethylation in Caenorhabditis elegans. Curr. Biol. 25, 2398–2403 (2015).

    CAS  PubMed  Google Scholar 

  92. 92.

    Vastenhouw, N. L. et al. Gene expression: long-term gene silencing by RNAi. Nature 442, 882 (2006).

    CAS  PubMed  Google Scholar 

  93. 93.

    Buckley, B. A. et al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489, 447–451 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Guang, S. et al. An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science 321, 537–541 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Burton, N. O., Burkhart, K. B. & Kennedy, S. Nuclear RNAi maintains heritable gene silencing in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 108, 19683–19688 (2011).

    CAS  PubMed  Google Scholar 

  96. 96.

    Pak, J., Maniar, J. M., Mello, C. C. & Fire, A. Protection from feed-forward amplification in an amplified RNAi mechanism. Cell 151, 885–899 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Sapetschnig, A., Sarkies, P., Lehrbach, N. J. & Miska, E. A. Tertiary siRNAs mediate paramutation in C. elegans. PLoS Genet. 11, e1005078 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Kalinava, N., Ni, J. Z., Peterman, K., Chen, E. & Gu, S. G. Decoupling the downstream effects of germline nuclear RNAi reveals that H3K9me3 is dispensable for heritable RNAi and the maintenance of endogenous siRNA-mediated transcriptional silencing in Caenorhabditis elegans. Epigenetics Chromatin 10, 6 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Lev, I., Gingold, H. & Rechavi, O. H3K9me3 is required for transgenerational inheritance of small RNAs that target a unique subset of newly evolved genes. Preprint at https://doi.org/10.1101/338582 (2018).

  100. 100.

    Lev, I. et al. MET-2-dependent H3K9 methylation suppresses transgenerational small RNA inheritance. Curr. Biol. 27, 1138–1147 (2017).

    CAS  PubMed  Google Scholar 

  101. 101.

    Houri-Ze’evi, L. et al. A tunable mechanism determines the duration of the transgenerational small RNA inheritance in C. elegans. Cell 165, 88–99 (2016).

    PubMed  Google Scholar 

  102. 102.

    Wilkins, C. et al. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436, 1044–1047 (2005).

    CAS  PubMed  Google Scholar 

  103. 103.

    Lu, R. et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436, 1040–1043 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Schott, D. H., Cureton, D. K., Whelan, S. P. & Hunter, C. P. An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 102, 18420–18424 (2005).

    CAS  PubMed  Google Scholar 

  105. 105.

    Gammon, D. B. et al. The antiviral RNA interference response provides resistance to lethal arbovirus infection and vertical transmission in Caenorhabditis elegans. Curr. Biol. 27, 795–806 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Ashe, A., Sarkies, P., Le Pen, J., Tanguy, M. & Miska, E. A. Antiviral RNA interference against Orsay virus is neither systemic nor transgenerational in Caenorhabditis elegans. J. Virol. 89, 12035–12046 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Sarkies, P. & Miska, E. A. Small RNAs break out: the molecular cell biology of mobile small RNAs. Nat. Rev. Mol. Cell Biol. 15, 525–535 (2014).

    CAS  PubMed  Google Scholar 

  108. 108.

    Devanapally, S., Ravikumar, S. & Jose, A. M. Double-stranded RNA made in C. elegans neurons can enter the germline and cause transgenerational gene silencing. Proc. Natl Acad. Sci. USA 112, 2133–2138 (2015).

    CAS  PubMed  Google Scholar 

  109. 109.

    Cossetti, C. et al. Soma-to-germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes. PLoS ONE 9, e101629 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207 (2006).

    CAS  PubMed  Google Scholar 

  111. 111.

    Gent, J. I. et al. Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans soma. Mol. Cell 37, 679–689 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Rechavi, O. et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277–287 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Siklenka, K. et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350, aab2006 (2015).

    PubMed  Google Scholar 

  114. 114.

    Demoinet, E., Li, S. & Roy, R. AMPK blocks starvation-inducible transgenerational defects in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 114, E2689–E2698 (2017).

    CAS  PubMed  Google Scholar 

  115. 115.

    Kishimoto, S., Uno, M., Okabe, E., Nono, M. & Nishida, E. Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans. Nat. Commun. 8, 14031 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Camacho, J. et al. The memory of environmental chemical exposure in C. elegans is dependent on the Jumonji demethylases jmjd-2 and jmjd-3/utx-1. Cell Rep. 23, 2392–2404 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Klosin, A., Casas, E., Hidalgo-Carcedo, C., Vavouri, T. & Lehner, B. Transgenerational transmission of environmental information in C. elegans. Science 356, 320–323 (2017).

    CAS  PubMed  Google Scholar 

  118. 118.

    Xia, B. & de Belle, S. Transgenerational programming of longevity and reproduction by post-eclosion dietary manipulation in Drosophila. Aging (Albany NY) 8, 1115–1134 (2016).

    Google Scholar 

  119. 119.

    Ciabrelli, F. et al. Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nat. Genet. 49, 876–886 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Ni, J. Z. et al. A transgenerational role of the germline nuclear RNAi pathway in repressing heat stress-induced transcriptional activation in C. elegans. Epigenetics Chromatin 9, 3 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Jobson, M. A. et al. Transgenerational effects of early life starvation on growth, reproduction, and stress resistance in Caenorhabditis elegans. Genetics 201, 201–212 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Webster, A. K., Jordan, J. M., Hibshman, J. D., Chitrakar, R. & Baugh, L. R. Transgenerational effects of extended dauer diapause on starvation survival and gene expression plasticity in Caenorhabditis elegans. Genetics 210, 263–274 (2018).

    PubMed  Google Scholar 

  123. 123.

    Dias, B. G. & Ressler, K. J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96 (2014).

    CAS  PubMed  Google Scholar 

  124. 124.

    Klosin, A. et al. Impaired DNA replication derepresses chromatin and generates a transgenerationally inherited epigenetic memory. Sci. Adv. 3, e1701143 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Seong, K.-H., Li, D., Shimizu, H., Nakamura, R. & Ishii, S. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145, 1049–1061 (2011).

    CAS  PubMed  Google Scholar 

  126. 126.

    Frézal, L., Demoinet, E., Braendle, C., Miska, E. & Félix, M.-A. Natural genetic variation in a multigenerational phenotype in C. elegans. Curr. Biol. 28, 2588–2596.e8 (2018).

    PubMed  Google Scholar 

  127. 127.

    Ahmed, S. & Hodgkin, J. MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature 403, 159–164 (2000).

    CAS  PubMed  Google Scholar 

  128. 128.

    Yanowitz, J. L. Genome integrity is regulated by the Caenorhabditis elegans Rad51D homolog rfs-1. Genetics 179, 249–262 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Katz, D. J., Edwards, T. M., Reinke, V. & Kelly, W. G. A. C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137, 308–320 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Xiao, Y. et al. Caenorhabditis elegans chromatin-associated proteins SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells. Proc. Natl Acad. Sci. USA 108, 8305–8310 (2011).

    CAS  PubMed  Google Scholar 

  131. 131.

    Spracklin, G. et al. The RNAi inheritance machinery of Caenorhabditis elegans. Genetics 206, 1403–1416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Alvares, S. M., Mayberry, G. A., Joyner, E. Y., Lakowski, B. & Ahmed, S. H3K4 demethylase activities repress proliferative and postmitotic aging. Aging Cell 13, 245–253 (2014).

    CAS  PubMed  Google Scholar 

  133. 133.

    Simon, M. et al. Reduced insulin/IGF-1 signaling restores germ cell immortality to Caenorhabditis elegans Piwi mutants. Cell Rep. 7, 762–773 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Sakaguchi, A. et al. Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations. Proc. Natl Acad. Sci. USA 111, E4323–E4331 (2014).

    CAS  PubMed  Google Scholar 

  135. 135.

    Heestand, B., Simon, M., Frenk, S., Titov, D. & Ahmed, S. Transgenerational sterility of Piwi mutants represents a dynamic form of adult reproductive diapause. Cell Rep. 23, 156–171 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Yamanaka, S., Siomi, M. C. & Siomi, H. piRNA clusters and open chromatin structure. Mobile DNA 5, 22 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Luteijn, M. J. & Ketting, R. F. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat. Rev. Genet. 14, 523–534 (2013).

    CAS  PubMed  Google Scholar 

  138. 138.

    Shen, E.-Z. et al. Identification of piRNA binding sites reveals the Argonaute regulatory landscape of the C. elegans germline. Cell 172, 937–951.e18 (2018).

    CAS  PubMed  Google Scholar 

  139. 139.

    Seth, M. et al. The coding regions of germline mRNAs confer sensitivity to Argonaute regulation in C. elegans. Cell Rep. 22, 2254–2264 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Tang, W. et al. A sex chromosome piRNA promotes robust dosage compensation and sex determination in C. elegans. Dev. Cell 44, 762–770.e3 (2018).

    CAS  PubMed  Google Scholar 

  141. 141.

    Zhang, D. et al. The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes. Science 359, 587–592 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Fire, A., Alcazar, R. & Tan, F. Unusual DNA structures associated with germline genetic activity in Caenorhabditis elegans. Genetics 173, 1259–1273 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Frøkjær-Jensen, C. et al. An abundant class of non-coding DNA can prevent stochastic gene silencing in the C. elegans germline. Cell 166, 343–357 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Seth, M. et al. The C. elegans CSR-1 Argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev. Cell 27, 656–663 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Wedeles, C. J., Wu, M. Z. & Claycomb, J. M. Protection of germline gene expression by the C. elegans Argonaute CSR-1. Dev. Cell 27, 664–671 (2013).

    CAS  PubMed  Google Scholar 

  146. 146.

    Claycomb, J. M. et al. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139, 123–134 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Wan, G. et al. Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance. Nature 557, 679–683 (2018).

    CAS  PubMed  Google Scholar 

  148. 148.

    Ishidate, T. et al. ZNFX-1 functions within perinuclear nuage to balance epigenetic signals. Mol. Cell 70, 639–649.e6 (2018).

    CAS  PubMed  Google Scholar 

  149. 149.

    Batista, P. J. et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67–78 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Lee, H.-C. et al. C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 150, 78–87 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Holoch, D. & Moazed, D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16, 71–84 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Huang, X., Fejes Tóth, K. & Aravin, A. A. piRNA biogenesis in Drosophila melanogaster. Trends Genet. 33, 882–894 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Kuramochi-Miyagawa, S. et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908–917 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Aravin, A. A. et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31, 785–799 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Klenov, M. S. et al. Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries. Nucleic Acids Res. 42, 6208–6218 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Rozhkov, N. V., Hammell, M. & Hannon, G. J. Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev. 27, 400–412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Le Thomas, A. et al. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 27, 390–399 (2013).

    PubMed  PubMed Central  Google Scholar 

  158. 158.

    Sienski, G., Dönertas, D. & Brennecke, J. Transcriptional silencing of transposons by Piwi and Maelstrom and its impact on chromatin state and gene expression. Cell 151, 964–980 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Han, S. et al. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 544, 185–190 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a European Research Council (ERC) consolidator grant (616434), the Spanish Ministry of Economy and Competitiveness (BFU2017-89488-P and SEV-2012-0208), the AXA Research Fund, the Bettencourt Schueller Foundation, Agencia de Gestio d’Ajuts Universitaris i de Recerca (AGAUR; SGR-831), the EMBL-CRG Systems Biology Program and the CERCA Program/Generalitat de Catalunya.

Author information

Affiliations

Authors

Contributions

M.F.P. and B.L. wrote the manuscript.

Corresponding author

Correspondence to Ben Lehner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perez, M.F., Lehner, B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat Cell Biol 21, 143–151 (2019). https://doi.org/10.1038/s41556-018-0242-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing