Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mesenchymal–epithelial transition in development and reprogramming

During organogenesis, epithelial cells can give rise to mesenchymal cells through epithelial–mesenchymal transition. The reverse process, mesenchymal–epithelial transition (MET), can similarly generate epithelial cells. Transitions between epithelial and mesenchymal states are also critical for the induction of pluripotent stem cells from somatic cells. This Review discusses the relatively less characterized process of MET, focusing on the genesis of apicobasal cell polarity and exploring the roles of MET in development and reprogramming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of the first epithelia in the mouse embryo through MET.
Fig. 2: Determinants of apicobasal polarity and lumen formation in epithelial cells.
Fig. 3: Sequential EMT and MET for reprogramming of somatic cells.

Similar content being viewed by others

References

  1. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. Emt: 2016. Cell 166, 21–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez-Boulan, E. & Macara, I. G. Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell Biol. 15, 225–242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dong, J. et al. Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis. Genome Biol. 19, 31 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Huang, R. Y., Guilford, P. & Thiery, J. P. Early events in cell adhesion and polarity during epithelial–mesenchymal transition. J. Cell Sci. 125, 4417–4422 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Lim, J. & Thiery, J. P. Epithelial–mesenchymal transitions: insights from development. Development 139, 3471–3486 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Pastushenko, I. et al. Identification of the tumour transition states occurring during EMT. Nature 556, 463–468 (2018).

    Article  PubMed  CAS  Google Scholar 

  7. Tepass, U. Epithelial differentiation in Drosophila. Bioessays 19, 673–682 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Tepass, U. & Hartenstein, V. The development of cellular junctions in the Drosophila embryo. Dev. Biol. 161, 563–596 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Campbell, K., Casanova, J. & Skaer, H. Mesenchymal-to-epithelial transition of intercalating cells in Drosophila renal tubules depends on polarity cues from epithelial neighbours. Mech. Dev. 127, 345–357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stern, C. D. (ed.). Gastrulation: From Cells to Embryos (Cold Spring Harbor Laboratory Press, New York, 2004).

  11. Varga, J. & Greten, F. R. Cell plasticity in epithelial homeostasis and tumorigenesis. Nat. Cell Biol. 19, 1133–1141 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Shu, X. & Pei, D. The function and regulation of mesenchymal-to-epithelial transition in somatic cell reprogramming. Curr. Opin. Genet. Dev. 28, 32–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, J., Ocampo, A. & Belmonte, J. C. I. Cellular metabolism and induced pluripotency. Cell 166, 1371–1385 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Loubat-Casanovas, J. et al. Snail1 is required for the maintenance of the pancreatic acinar phenotype. Oncotarget 7, 4468–4482 (2016).

    Article  PubMed  Google Scholar 

  15. Chakrabarti, R. et al. Elf5 inhibits the epithelial–mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat. Cell Biol. 14, 1212–1222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ray, H. J. & Niswander, L. A. Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure. Development 143, 1192–1204 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chung, V. Y. et al. GRHL2–miR-200–ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci. Rep. 6, 19943 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frisch, S. M., Farris, J. C. & Pifer, P. M. Roles of Grainyhead-like transcription factors in cancer. Oncogene 36, 6067–6073 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, B. et al. Transcriptional mechanisms link epithelial plasticity to adhesion and differentiation of epidermal progenitor cells. Dev. Cell 29, 47–58 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Watanabe, K. et al. Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. Dev. Cell 29, 59–74 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eckert, J. J. & Fleming, T. P. Tight junction biogenesis during early development. Biochim. Biophys. Acta 1778, 717–728 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Eckert, J. J. et al. Relative contribution of cell contact pattern, specific PKC isoforms and gap junctional communication in tight junction assembly in the mouse early embryo. Dev. Biol. 288, 234–247 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Bedzhov, I. & Zernicka-Goetz, M. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156, 1032–1044 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Larue, L., Ohsugi, M., Hirchenhain, J. & Kemler, R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl Acad. Sci. USA 91, 8263–8267 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kan, N. G. et al. Gene replacement reveals a specific role for E-cadherin in the formation of a functional trophectoderm. Development 134, 31–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Kimura, T. E. et al. Desmosomal adhesiveness is developmentally regulated in the mouse embryo and modulated during trophectoderm migration. Dev. Biol. 369, 286–297 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Choi, I., Carey, T. S., Wilson, C. A. & Knott, J. G. Transcription factor AP-2γ is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis. Development 139, 4623–4632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hermitte, S. & Chazaud, C. Primitive endoderm differentiation: from specification to epithelium formation. Phil. Trans. R. Soc. B 369, 20130537 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Veltmaat, J. M. et al. Snail is an immediate early target gene of parathyroid hormone related peptide signaling in parietal endoderm formation. Int. J. Dev. Biol. 44, 297–307 (2000).

    CAS  PubMed  Google Scholar 

  30. Phua, D. C. et al. ZO-1 and ZO-2 are required for extra-embryonic endoderm integrity, primitive ectoderm survival and normal cavitation in embryoid bodies derived from mouse embryonic stem cells. PLoS ONE 9, e99532 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Artus, J. & Chazaud, C. A close look at the mammalian blastocyst: epiblast and primitive endoderm formation. Cell. Mol. Life Sci. 71, 3327–3338 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Sokol, S. Y. Mechanotransduction during vertebrate neurulation. Curr. Top. Dev. Biol. 117, 359–376 (2016).

    Article  PubMed  Google Scholar 

  33. Du, J. et al. O-fucosylation of thrombospondin type 1 repeats restricts epithelial to mesenchymal transition (EMT) and maintains epiblast pluripotency during mouse gastrulation. Dev. Biol. 346, 25–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakaya, Y., Sukowati, E. W., Wu, Y. & Sheng, G. RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat. Cell Biol. 10, 765–775 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Gilbert, S. F. & Barresi, M. J. F. Developmental Biology (Sinauer Associates, Oxford, 2016).

    Google Scholar 

  36. Nakaya, Y., Kuroda, S., Katagiri, Y. T., Kaibuchi, K. & Takahashi, Y. Mesenchymal–epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev. Cell 7, 425–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Costantini, F. & Kopan, R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev. Cell 18, 698–712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takasato, M. & Little, M. H. The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development 142, 1937–1947 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Carroll, T. J., Park, J. S., Hayashi, S., Majumdar, A. & McMahon, A. P. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell 9, 283–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Takasato, M. et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16, 118–126 (2014).

    CAS  PubMed  Google Scholar 

  41. Abu-Issa, R. & Kirby, M. L. Heart field: from mesoderm to heart tube. Annu. Rev. Cell Dev. Biol. 23, 45–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Meilhac, S. M., Lescroart, F., Blanpain, C. & Buckingham, M. E. Cardiac cell lineages that form the heart. Cold Spring Harb. Perspect. Med. 4, a013888 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tirosh-Finkel, L., Elhanany, H., Rinon, A. & Tzahor, E. Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract. Development 133, 1943–1953 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. von Gise, A. & Pu, W. T. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ. Res. 110, 1628–1645 (2012).

    Article  CAS  Google Scholar 

  45. Asli, N. S. & Harvey, R. P. Epithelial to mesenchymal transition as a portal to stem cell characters embedded in gene networks. Bioessays 35, 191–200 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Moore, A. W., McInnes, L., Kreidberg, J., Hastie, N. D. & Schedl, A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126, 1845–1857 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Si-Tayeb, K., Lemaigre, F. P. & Duncan, S. A. Organogenesis and development of the liver. Dev. Cell 18, 175–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Bort, R., Signore, M., Tremblay, K., Martinez Barbera, J. P. & Zaret, K. S. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev. Biol. 290, 44–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Sosa-Pineda, B., Wigle, J. T. & Oliver, G. Hepatocyte migration during liver development requires Prox1. Nat. Genet. 25, 254–255 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Ludtke, T. H., Christoffels, V. M., Petry, M. & Kispert, A. Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology 49, 969–978 (2009).

    Article  PubMed  CAS  Google Scholar 

  51. Doi, Y. et al. Development of complementary expression patterns of E- and N-cadherin in the mouse liver. Hepatol. Res. 37, 230–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Tsukita, S. & Tsukita, S. Isolation of cell-to-cell adherens junctions from rat liver. J. Cell Biol. 108, 31–41 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Tanimizu, N., Miyajima, A. & Mostov, K. E. Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture. Mol. Biol. Cell 18, 1472–1479 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Assemat, E., Bazellieres, E., Pallesi-Pocachard, E., Le Bivic, A. & Massey-Harroche, D. Polarity complex proteins. Biochim. Biophys. Acta 1778, 614–630 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 18, 1909–1925 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Gassama-Diagne, A. & Payrastre, B. Phosphoinositide signaling pathways: promising role as builders of epithelial cell polarity. Int. Rev. Cell. Mol. Biol. 273, 313–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Krahn, M. P. & Wodarz, A. Phosphoinositide lipids and cell polarity: linking the plasma membrane to the cytocortex. Essays Biochem. 53, 15–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Humphries, J. D., Byron, A. & Humphries, M. J. Integrin ligands at a glance. J. Cell Sci. 119, 3901–3903 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Lee, J. L. & Streuli, C. H. Integrins and epithelial cell polarity. J. Cell Sci. 127, 3217–3225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Akhtar, N. & Streuli, C. H. An integrin–ILK–microtubule network orients cell polarity and lumen formation in glandular epithelium. Nat. Cell Biol. 15, 17–27 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bissell, M. J., Radisky, D. C., Rizki, A., Weaver, V. M. & Petersen, O. W. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70, 537–546 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Manninen, A. Epithelial polarity—generating and integrating signals from the ECM with integrins. Exp. Cell Res. 334, 337–349 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Monteleon, C. L. et al. Establishing epithelial glandular polarity: interlinked roles for ARF6, Rac1, and the matrix microenvironment. Mol. Biol. Cell 23, 4495–4505 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. O’Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat. Cell Biol. 3, 831–838 (2001).

    Article  PubMed  Google Scholar 

  65. Yu, W. et al. 1-integrin orients epithelial polarity via Rac1 and laminin. Mol. Biol. Cell 16, 433–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bachir, A. I., Horwitz, A. R., Nelson, W. J. & Bianchini, J. M. Actin-based adhesion modules mediate cell interactions with the extracellular matrix and neighboring cells. Cold Spring Harb. Perspect. Biol. 9, a023234 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Yu, W. et al. Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity. EMBO Rep. 9, 923–929 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ivanov, A. I. & Naydenov, N. G. Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies. Int. Rev. Cell. Mol. Biol. 303, 27–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Overeem, A. W., Bryant, D. M. & van IJzendoorn, S. C. Mechanisms of apical–basal axis orientation and epithelial lumen positioning. Trends Cell Biol. 25, 476–485 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol. 9, 887–901 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Engl, W., Arasi, B., Yap, L. L., Thiery, J. P. & Viasnoff, V. Actin dynamics modulate mechanosensitive immobilization of E-cadherin at adherens junctions. Nat. Cell Biol. 16, 587–594 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Yap, A. S., Gomez, G. A. & Parton, R. G. Adherens junctions revisualized: organizing cadherins as nanoassemblies. Dev. Cell 35, 12–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Acharya, B. R. & Yap, A. S. Pli Selon Pli: mechanochemical feedback and the morphogenetic role of contractility at cadherin cell–cell junctions. Curr. Top. Dev. Biol. 117, 631–646 (2016).

    Article  PubMed  Google Scholar 

  74. Chu, Y. S. et al. Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J. Cell Biol. 167, 1183–1194 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lecuit, T. & Yap, A. S. E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat. Cell Biol. 17, 533–539 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Coopman, P. & Djiane, A. Adherens junction and E-cadherin complex regulation by epithelial polarity. Cell. Mol. Life Sci. 73, 3535–3553 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Yang, Z. et al. De novo lumen formation and elongation in the developing nephron: a central role for afadin in apical polarity. Development 140, 1774–1784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. St Johnston, D. & Ahringer, J. Cell polarity in eggs and epithelia: parallels and diversity. Cell 141, 757–774 (2010).

    Article  CAS  Google Scholar 

  79. Noda, Y. et al. Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C. Genes Cells 6, 107–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Qin, Y., Meisen, W. H., Hao, Y. & Macara, I. G. Tuba, a Cdc42 GEF, is required for polarized spindle orientation during epithelial cyst formation. J. Cell Biol. 189, 661–669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Qiu, R. G., Abo, A. & Steven Martin, G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformation. Curr. Biol. 10, 697–707 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Sotillos, S., Diaz-Meco, M. T., Caminero, E., Moscat, J. & Campuzano, S. DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila. J. Cell Biol. 166, 549–557 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Betschinger, J., Mechtler, K. & Knoblich, J. A. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422, 326–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Dong, W. et al. A conserved polybasic domain mediates plasma membrane targeting of Lgl and its regulation by hypoxia. J. Cell Biol. 211, 273–286 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Plant, P. J. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat. Cell Biol. 5, 301–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Kim, M., Datta, A., Brakeman, P., Yu, W. & Mostov, K. E. Polarity proteins PAR6 and aPKC regulate cell death through GSK-3β in 3D epithelial morphogenesis. J. Cell Sci. 120, 2309–2317 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, S. et al. Regulation of microtubule stability and organization by mammalian Par3 in specifying neuronal polarity. Dev. Cell 24, 26–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Schmoranzer, J. et al. Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Curr. Biol. 19, 1065–1074 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen, X. & Macara, I. G. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat. Cell Biol. 7, 262–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Matsuzawa, K. et al. PAR3–aPKC regulates Tiam1 by modulating suppressive internal interactions. Mol. Biol. Cell 27, 1511–1523 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G. & Margolis, B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat. Cell Biol. 5, 137–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Schink, K. O., Tan, K. W. & Stenmark, H. Phosphoinositides in control of membrane dynamics. Annu. Rev. Cell Dev. Biol. 32, 143–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Shewan, A., Eastburn, D. J. & Mostov, K. Phosphoinositides in cell architecture. Cold Spring Harb. Perspect. Biol. 3, a004796 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guerriero, C. J., Weixel, K. M., Bruns, J. R. & Weisz, O. A. Phosphatidylinositol 5-kinase stimulates apical biosynthetic delivery via an Arp2/3-dependent mechanism. J. Biol. Chem. 281, 15376–15384 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Szalinski, C. M. et al. PIP5KIβ selectively modulates apical endocytosis in polarized renal epithelial cells. PLoS ONE 8, e53790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Awad, A. et al. SHIP2 regulates epithelial cell polarity through its lipid product, which binds to Dlg1, a pathway subverted by hepatitis C virus core protein. Mol. Biol. Cell 24, 2171–2185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hamze-Komaiha, O., Sarr, S., Arlot-Bonnemains, Y., Samuel, D. & Gassama-Diagne, A. SHIP2 regulates lumen generation, cell division, and ciliogenesis through the control of basolateral to apical lumen localization of Aurora A and HEF 1. Cell Rep. 17, 2738–2752 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. O’Farrell, F. et al. Class III phosphatidylinositol-3-OH kinase controls epithelial integrity through endosomal LKB1 regulation. Nat. Cell Biol. 19, 1412–1423 (2017).

    Article  PubMed  CAS  Google Scholar 

  100. Gassama-Diagne, A. et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat. Cell Biol. 8, 963–970 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Peng, J. et al. Phosphoinositide 3-kinase p110δ promotes lumen formation through the enhancement of apico-basal polarity and basal membrane organization. Nat. Commun. 6, 5937 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Hoffding, M. K. & Hyttel, P. Ultrastructural visualization of the mesenchymal-to-epithelial transition during reprogramming of human fibroblasts to induced pluripotent stem cells. Stem Cell Res. 14, 39–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Subramanyam, D. et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 29, 443–448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, R. et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Hansson, J. et al. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep. 2, 1579–1592 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Choi, B. et al. Stiffness of hydrogels regulates cellular reprogramming efficiency through mesenchymal-to-epithelial transition and stemness markers. Macromol. Biosci. 16, 199–206 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Downing, T. L. et al. Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12, 1154–1162 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Sakurai, K. et al. Kinome-wide functional analysis highlights the role of cytoskeletal remodeling in somatic cell reprogramming. Cell Stem Cell 14, 523–534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Di Stefano, B. et al. C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature 506, 235–239 (2014).

    Article  PubMed  CAS  Google Scholar 

  112. Gao, S. et al. Genome-wide gene expression analyses reveal unique cellular characteristics related to the amenability of HPC/HSCs into high-quality induced pluripotent stem cells. Stem Cell Res Ther. 7, 40 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. An, J., Zheng, Y. & Dann, C. T. Mesenchymal to epithelial transition mediated by CDH1 promotes spontaneous reprogramming of male germline stem cells to pluripotency. Stem Cell Rep. 8, 446–459 (2017).

    Article  CAS  Google Scholar 

  114. Hu, X. et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 14, 512–522 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Huang, P. et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475, 386–389 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Lim, K. T. et al. Small molecules facilitate single factor-mediated hepatic reprogramming. Cell Rep. 15, 814–829 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Sekiya, S. & Suzuki, A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475, 390–393 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Cao, S. et al. Chemical reprogramming of mouse embryonic and adult fibroblast into endoderm lineage. J. Biol. Chem. 292, 19122–19132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. D’Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).

    Article  PubMed  CAS  Google Scholar 

  120. Li, Q. et al. A sequential EMT–MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes. Nat. Commun. 8, 15166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Liu, X. et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT–MET mechanism for optimal reprogramming. Nat. Cell Biol. 15, 829–838 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Maherali, N. & Hochedlinger, K. Tgfβ signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr. Biol. 19, 1718–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Polo, J. M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liang, G., He, J. & Zhang, Y. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat. Cell Biol. 14, 457–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Onder, T. T. et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483, 598–602 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, T. et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 9, 575–587 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Mathieu, J. & Ruohola-Baker, H. Metabolic remodeling during the loss and acquisition of pluripotency. Development 144, 541–551 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226 (2013).

    Article  PubMed  CAS  Google Scholar 

  129. Shiraki, N. et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19, 780–794 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Moussaieff, A. et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21, 392–402 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Hay, E. D. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev. Dyn. 233, 706–720 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Han, X. et al. Mapping the mouse cell atlas by Microwell-seq. Cell 172, 1091–1107 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Tan, T. Z. et al. Epithelial–mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol. Med. 6, 1279–1293 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cronan, M. R. et al. Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity 45, 861–876 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Akalay, I. et al. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res. 73, 2418–2427 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Noman, M. Z. et al. The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology 6, e1263412 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Terry, S. et al. Acquisition of tumor cell phenotypic diversity along the EMT spectrum under hypoxic pressure: consequences on susceptibility to cell-mediated cytotoxicity. Oncoimmunology 6, e1271858 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Antony, J. et al. The GAS6–AXL signaling network is a mesenchymal (Mes) molecular subtype-specific therapeutic target for ovarian cancer. Sci. Signal. 9, ra97 (2016).

    Article  PubMed  CAS  Google Scholar 

  145. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Datta, A., Bryant, D. M. & Mostov, K. E. Molecular regulation of lumen morphogenesis. Curr. Biol. 21, R126–R136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Peng, J. & Gassama-Diagne, A. Apicobasal polarity and Ras/Raf/MEK/ERK signalling in cancer. Gut 66, 986–987 (2017).

    Article  PubMed  CAS  Google Scholar 

  150. He, S. et al. Sequential EMT–MET induces neuronal conversion through Sox2. Cell Discov. 3, 17017 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Jackson for her expert editing, K. Campbell, J. Casanova and E. Tzahor for advice and J. Peng for the artwork. D.P., X.S. and J.P.T. are supported by the National Natural Science Foundation of China (31421004) and the Key grant from the Guangdong Science and Technology Foundation of Guangdong Province (2017B030314056). A.G.-D. is supported by INSERM and the Ligue contre le Cancer.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the Review.

Corresponding authors

Correspondence to Duanqing Pei or Jean Paul Thiery.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, D., Shu, X., Gassama-Diagne, A. et al. Mesenchymal–epithelial transition in development and reprogramming. Nat Cell Biol 21, 44–53 (2019). https://doi.org/10.1038/s41556-018-0195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0195-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing