Deconstructing and reconstructing the mouse and human early embryo

Abstract

The emergence of form and function during mammalian embryogenesis is a complex process that involves multiple regulatory levels. The foundations of the body plan are laid throughout the first days of post-implantation development as embryonic stem cells undergo symmetry breaking and initiate lineage specification, in a process that coincides with a global morphological reorganization of the embryo. Here, we review experimental models and how they have shaped our current understanding of the post-implantation mammalian embryo.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of technical breakthroughs in early mouse and human embryo research.
Fig. 2: Overview of mouse and human post-implantation development.
Fig. 3: Cell types in early post-implantation mammalian embryos.
Fig. 4: Stem cell models of the mouse and human embryo.

References

  1. 1.

    Oppenheimer, J. M. Essays in the History of Embryology and Biology (The MIT Press, Cambridge, MA, 1967).

  2. 2.

    Tarkowski, A. K. Experiments on the development of isolated blastomers of mouse eggs. Nature 184, 1286–1287 (1959).

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Gardner, R. L. Mouse chimeras obtained by the injection of cells into the blastocyst. Nature 220, 596–597 (1968).

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Tarkowski, A. K. Mouse chimaeras developed from fused eggs. Nature 190, 857–860 (1961).

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Zijlstra, M., Li, E., Sajjadi, F., Subramani, S. & Jaenisch, R. Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342, 435–438 (1989).

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Koller, B. H. & Smithies, O. Inactivating the beta 2-microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc. Natl Acad. Sci. USA 86, 8932–8935 (1989).

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Thompson, S., Clarke, A. R., Pow, A. M., Hooper, M. L. & Melton, D. W. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56, 313–321 (1989).

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Davies, J. Using synthetic biology to explore principles of development. Development 144, 1146–1158 (2017).

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Pera, M. F. Human embryo research and the 14-day rule. Development 144, 1923–1925 (2017).

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Hammond, J. Jr. Recovery and culture of tubal mouse ova. Nature 163, 28 (1949).

    PubMed  Article  Google Scholar 

  11. 11.

    Whitten, W. K. Culture of tubal mouse ova. Nature 177, 96 (1956).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Ho, Y., Wigglesworth, K., Eppig, J. J. & Schultz, R. M. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41, 232–238 (1995).

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Svoboda, P., Stein, P., Hayashi, H. & Schultz, R. M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147–4156 (2000).

    PubMed  CAS  Google Scholar 

  14. 14.

    Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75 (2000).

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Tam, P. P. & Loebel, D. A. Gene function in mouse embryogenesis: get set for gastrulation. Nat. Rev. Genet. 8, 368–381 (2007).

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Bischoff, M., Parfitt, D. E. & Zernicka-Goetz, M. Formation of the embryonic-abembryonic axis of the mouse blastocyst: relationships between orientation of early cleavage divisions and pattern of symmetric/asymmetric divisions. Development 135, 953–962 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Strnad, P. et al. Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat. Methods 13, 139–142 (2016).

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Plachta, N., Bollenbach, T., Pease, S., Fraser, S. E. & Pantazis, P. Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat. Cell Biol. 13, 117–123 (2011).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    White, M. D. et al. Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell 165, 75–87 (2016).

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Rossant, J. & Tam, P. P. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136, 701–713 (2009).

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Wang, H. & Dey, S. K. Roadmap to embryo implantation: clues from mouse models. Nat. Rev. Genet. 7, 185–199 (2006).

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Bedzhov, I., Graham, S. J., Leung, C. Y. & Zernicka-Goetz, M. Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo. Philos. T. Roy., Soc. B 369, 20130538 (2014).

    Article  CAS  Google Scholar 

  23. 23.

    Macklon, N. S., Geraedts, J. P. & Fauser, B. C. Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Hum. Reprod. Update 8, 333–343 (2002).

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Latos, P. A. & Hemberger, M. From the stem of the placental tree: trophoblast stem cells and their progeny. Development 143, 3650–3660 (2016).

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Takaoka, K. & Hamada, H. Cell fate decisions and axis determination in the early mouse embryo. Development 139, 3–14 (2012).

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Robertson, E. J. Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Semin. Cell Dev. Biol. 32, 73–79 (2014).

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Stower, M. J. & Srinivas, S. Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo. Philos. T. Roy. Soc. B 369, 20130546 (2014).

    Article  CAS  Google Scholar 

  28. 28.

    Beck, S. et al. Extraembryonic proteases regulate Nodal signalling during gastrulation. Nat. Cell Biol. 4, 981–985 (2002).

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Ben-Haim, N. et al. The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev. Cell 11, 313–323 (2006).

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Rivera-Perez, J. A., Mager, J. & Magnuson, T. Dynamic morphogenetic events characterize the mouse visceral endoderm. Dev. Biol. 261, 470–487 (2003).

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Thomas, P. & Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996).

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Yamamoto, M. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428, 387–392 (2004).

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Leitch, H. G., Tang, W. W. & Surani, M. A. Primordial germ-cell development and epigenetic reprogramming in mammals. Curr. Top. Dev. Biol. 104, 149–187 (2013).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Hsu, Y. C. Post-blastocyst differentiation in vitro. Nature 231, 100–102 (1971).

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Hsu, Y. C. Differentiation in vitro of mouse embryos beyond the implantation stage. Nature 239, 200–202 (1972).

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Jenkinson, E. J. & Wilson, I. B. In vitro support system for the study of blastocyst differentiation in the mouse. Nature 228, 776–778 (1970).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Pienkowski, M., Solter, D. & Koprowski, H. Early mouse embryos: growth and differentiation in vitro. Exp. Cell Res. 85, 424–428 (1974).

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Wiley, L. M. & Pedersen, R. A. Morphology of mouse egg cylinder development in vitro: a light and electron microscopic study. J. Exp. Zool. 200, 389–402 (1977).

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Wilson, I. B. & Jenkinson, E. J. Blastocyst differentiation in vitro. J. Reprod. Fertil. 39, 243–249 (1974).

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Copp, A. J. The mechanism of mouse egg-cylinder morphogenesis in vitro. J. Embryol. Exp. Morphol. 61, 277–287 (1981).

    PubMed  CAS  Google Scholar 

  42. 42.

    Salomon, D. S. & Sherman, M. I. Implantation and invasiveness of mouse blastocysts on uterine monolayers. Exp. Cell Res. 90, 261–268 (1975).

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Bedzhov, I., Leung, C. Y., Bialecka, M. & Zernicka-Goetz, M. In vitro culture of mouse blastocysts beyond the implantation stages. Nat. Protoc. 9, 2732–2739 (2014).

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Morris, S. A. et al. Dynamics of anterior-posterior axis formation in the developing mouse embryo. Nat. Commun. 3, 673 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Bedzhov, I. & Zernicka-Goetz, M. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156, 1032–1044 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Li, S., Edgar, D., Fassler, R., Wadsworth, W. & Yurchenco, P. D. The role of laminin in embryonic cell polarization and tissue organization. Dev. Cell 4, 613–624 (2003).

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Coucouvanis, E. & Martin, G. R. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83, 279–287 (1995).

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Hoppe, P. S., Coutu, D. L. & Schroeder, T. Single-cell technologies sharpen up mammalian stem cell research. Nat. Cell Biol. 16, 919–927 (2014).

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Xue, Z. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Deng, Q., Ramskold, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Tang, F. et al. Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLoS ONE 6, e21208 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Biase, F. H., Cao, X. & Zhong, S. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Res. 24, 1787–1796 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Shi, J. et al. Dynamic transcriptional symmetry-breaking in pre-implantation mammalian embryo development revealed by single-cell RNA-seq. Development 142, 3468–3477 (2015).

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Goolam, M. et al. Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165, 61–74 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Kalkan, T. & Smith, A. Mapping the route from naive pluripotency to lineage specification. Philos. T. Roy. Soc. B 369, 20130540 (2014).

    Article  CAS  Google Scholar 

  56. 56.

    Boroviak, T. et al. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35, 366–382 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Mohammed, H. et al. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep. 20, 1215–1228 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58.

    De Los Angeles, A. et al. Hallmarks of pluripotency. Nature 525, 469–478 (2015).

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 17, 155–169 (2016).

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Nichols, J. & Smith, A. Pluripotency in the embryo and in culture. Cold Spring Harb. Persp. Biol. 4, a008128 (2012).

    Google Scholar 

  61. 61.

    Shahbazi, M. N. et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature 552, 239–243 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  62. 62.

    Scognamiglio, R. et al. Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164, 668–680 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63.

    Bulut-Karslioglu, A. et al. Inhibition of mTOR induces a paused pluripotent state. Nature 540, 119–123 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64.

    Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  66. 66.

    Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985).

    PubMed  CAS  Google Scholar 

  67. 67.

    Martin, G. R. & Evans, M. J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl Acad. Sci. USA 72, 1441–1445 (1975).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  68. 68.

    Pierce, G. B. Jr. & Verney, E. L. An in vitro and in vivo study of differentiation in teratocarcinomas. Cancer 14, 1017–1029 (1961).

    PubMed  Article  Google Scholar 

  69. 69.

    Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    ten Berge, D. et al. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3, 508–518 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    van den Brink, S. C. et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141, 4231–4242 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74.

    Marikawa, Y., Tamashiro, D. A., Fujita, T. C. & Alarcon, V. B. Aggregated P19 mouse embryonal carcinoma cells as a simple in vitro model to study the molecular regulations of mesoderm formation and axial elongation morphogenesis. Genesis 47, 93–106 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Fuchs, C. et al. Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis. Cells Tissues Organs 195, 377–391 (2012).

    PubMed  Article  Google Scholar 

  76. 76.

    Turner, D. A. et al. Anteroposterior polarity and elongation in the absence of extraembryonic tissues and spatially localised signalling in Gastruloids, mammalian embryonic organoids. Development 144, 3894–3906 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. 77.

    Simunovic, M. & Brivanlou, A. H. Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development 144, 976–985 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Simian, M. & Bissell, M. J. Organoids: A historical perspective of thinking in three dimensions. J. Cell Biol. 216, 31–40 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Lee, E. Y., Parry, G. & Bissell, M. J. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98, 146–155 (1984).

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Montesano, R., Schaller, G. & Orci, L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66, 697–711 (1991).

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    O’Brien, L. E., Zegers, M. M. & Mostov, K. E. Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3, 531–537 (2002).

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Poh, Y. C. et al. Generation of organized germ layers from a single mouse embryonic stem cell. Nat. Commun. 5, 4000 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. 83.

    Denker, H. W. Self-organization of stem cell colonies and of early mammalian embryos: recent experiments shed new light on the role of autonomy vs. external instructions in basic body plan development. Cells 5, E39 (2016).

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Kojima, Y. et al. The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell 14, 107–120 (2014).

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S. & Saitou, M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519–532 (2011).

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Smith, A. Formative pluripotency: the executive phase in a developmental continuum. Development 144, 365–373 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89.

    Morgani, S. M., Metzger, J. J., Nichols, J., Siggia, E. D. & Hadjantonakis, A. K. Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning. eLife 7, e32839 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Kunath, T. et al. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132, 1649–1661 (2005).

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Harrison, S. E., Sozen, B., Christodoulou, N., Kyprianou, C. & Zernicka-Goetz, M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 356, eaal1810 (2017).

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Rivron, N. C. et al. Blastocyst-like structures generated solely from stem cells. Nature 557, 106–111 (2018).

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Kime, C. K. H. et al. Implantation-competent blastocyst-like structures from mouse pluripotent stem cells. bioRxiv. https://doi.org/10.1101/309542 (2018).

    Article  Google Scholar 

  95. 95.

    Sozen, B. A. et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo structures. Nat. Cell Biol. https://doi.org/10.1038/s41556-018-0147-7 (2018).

    PubMed  Article  Google Scholar 

  96. 96.

    Peng, G. et al. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev. Cell 36, 681–697 (2016).

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Edwards, R. G., Bavister, B. D. & Steptoe, P. C. Early stages of fertilization in vitro of human oocytes matured in vitro. Nature 221, 632–635 (1969).

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Rock, J. & Menkin, M. F. In vitro fertilization and cleavage of human ovarian eggs. Science 100, 105–107 (1944).

    PubMed  Article  CAS  Google Scholar 

  99. 99.

    Edwards, R. G., Steptoe, P. C. & Purdy, J. M. Fertilization and cleavage in vitro of preovulator human oocytes. Nature 227, 1307–1309 (1970).

    PubMed  Article  CAS  Google Scholar 

  100. 100.

    Menezo, Y., Testart, J. & Perrone, D. Serum is not necessary in human in vitro fertilization, early embryo culture, and transfer. Fertil. Steril. 42, 750–755 (1984).

    PubMed  Article  CAS  Google Scholar 

  101. 101.

    Niakan, K. K. & Eggan, K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 375, 54–64 (2013).

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Petropoulos, S. et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. 103.

    Braude, P., Bolton, V. & Moore, S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332, 459–461 (1988).

    PubMed  Article  CAS  Google Scholar 

  104. 104.

    Dobson, A. T. et al. The unique transcriptome through day 3 of human preimplantation development. Hum. Mol. Genet. 13, 1461–1470 (2004).

    PubMed  Article  CAS  Google Scholar 

  105. 105.

    Zhu, P. et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet. 50, 12–19 (2018).

    PubMed  Article  CAS  Google Scholar 

  106. 106.

    Stirparo, G. G. et al. Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. Development 145, 158501 (2018).

    Article  CAS  Google Scholar 

  107. 107.

    Fogarty, N. M. E. et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550, 67–73 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. 108.

    Wamaitha, S. E. & Niakan, K. K. Human Pre-gastrulation Development. Curr. Top. Dev. Biol. 128, 295–338 (2018).

    PubMed  Article  Google Scholar 

  109. 109.

    Koot, Y. E., Teklenburg, G., Salker, M. S., Brosens, J. J. & Macklon, N. S. Molecular aspects of implantation failure. Biochim. Biophys. Acta 1822, 1943–1950 (2012).

    PubMed  Article  CAS  Google Scholar 

  110. 110.

    Weimar, C. H., Post Uiterweer, E. D., Teklenburg, G., Heijnen, C. J. & Macklon, N. S. In-vitro model systems for the study of human embryo-endometrium interactions. Reprod. Biomed. Online 27, 461–476 (2013).

    PubMed  Article  CAS  Google Scholar 

  111. 111.

    Lindenberg, S., Nielsen, M. H. & Lenz, S. In vitro studies of human blastocyst implantation. Ann. NY Acad. Sci. 442, 368–374 (1985).

    PubMed  Article  CAS  Google Scholar 

  112. 112.

    Hertig, A. T., Rock, J. & Adams, E. C. A description of 34 human ova within the first 17 days of development. Am. J. Anat. 98, 435–493 (1956).

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Hertig, A. T. On the development of the amnion and exoccelomic membrane in the previllous human ovum. Yale J. Biol. Med. 18, 107–115 (1945).

    PubMed  PubMed Central  CAS  Google Scholar 

  114. 114.

    Hertig, A. T. Angiogenesis in the early human chorion and in the primary placenta of the macaque monkey. Contrib. Embryol. 25, 37–82 (1935).

    Google Scholar 

  115. 115.

    Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63 (2018).

    PubMed  Article  CAS  Google Scholar 

  116. 116.

    Burton, G. J. & Fowden, A. L. The placenta: a multifaceted, transient organ. Philos. T. Roy. Soc. B 370, 20140066 (2015).

    Article  Google Scholar 

  117. 117.

    Luckett, W. P. Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am. J. Anat. 152, 59–97 (1978).

    PubMed  Article  CAS  Google Scholar 

  118. 118.

    Pereira, P. N. et al. Amnion formation in the mouse embryo: the single amniochorionic fold model. BMC Dev. Biol. 11, 48 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    Witschi, E. Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contrib. Embryol. 32, 67–80 (1948).

    Google Scholar 

  120. 120.

    Luckett, W. P. The development of primordial and definitive amniotic cavities in early Rhesus monkey and human embryos. Am. J. Anat. 144, 149–167 (1975).

    PubMed  Article  CAS  Google Scholar 

  121. 121.

    Hill, J. P. The developmental history of the primates. Philos. T. Roy. Soc. B 221, 45–178 (1932).

    Article  Google Scholar 

  122. 122.

    Enders, A. C., Schlafke, S. & Hendrickx, A. G. Differentiation of the embryonic disc, amnion, and yolk sac in the rhesus monkey. Am. J. Anat. 177, 161–185 (1986).

    PubMed  Article  CAS  Google Scholar 

  123. 123.

    Enders, A. C. & King, B. F. Formation and differentiation of extraembryonic mesoderm in the rhesus monkey. Am. J. Anat. 181, 327–340 (1988).

    PubMed  Article  CAS  Google Scholar 

  124. 124.

    Sasaki, K. et al. The germ cell fate of Cynomolgus monkeys is specified in the nascent amnion. Dev. Cell 39, 169–185 (2016).

    PubMed  Article  CAS  Google Scholar 

  125. 125.

    Kobayashi, T. et al. Principles of early human development and germ cell program from conserved model systems. Nature 546, 416–420 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  126. 126.

    Irie, N. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253–268 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  127. 127.

    Sasaki, K. et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17, 178–194 (2015).

    PubMed  Article  CAS  Google Scholar 

  128. 128.

    Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. 129.

    Deglincerti, A. et al. Self-organization of the in vitro attached human embryo. Nature 533, 251–254 (2016).

    PubMed  Article  CAS  Google Scholar 

  130. 130.

    Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).

    PubMed  Article  CAS  Google Scholar 

  131. 131.

    Ma, H. et al. Correction of a pathogenic gene mutation in human embryos. Nature 548, 413–419 (2017).

    PubMed  Article  CAS  Google Scholar 

  132. 132.

    Kang, X. et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J. Assist. Reprod. Genet. 33, 581–588 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Liang, P. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6, 363–372 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  134. 134.

    Mascetti, V. L. & Pedersen, R. A. Human-mouse chimerism validates human stem cell pluripotency. Cell Stem Cell 18, 67–72 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  135. 135.

    Wu, J. et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature 521, 316–321 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  136. 136.

    Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  137. 137.

    James, D., Noggle, S. A., Swigut, T. & Brivanlou, A. H. Contribution of human embryonic stem cells to mouse blastocysts. Dev. Biol. 295, 90–102 (2006).

    PubMed  Article  CAS  Google Scholar 

  138. 138.

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  139. 139.

    Itskovitz-Eldor, J. et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6, 88–95 (2000).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. 140.

    Sharon, N., Mor, I., Golan-lev, T., Fainsod, A. & Benvenisty, N. Molecular and functional characterizations of gastrula organizer cells derived from human embryonic stem cells. Stem Cells 29, 600–608 (2011).

    PubMed  Article  CAS  Google Scholar 

  141. 141.

    Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    PubMed  Article  CAS  Google Scholar 

  142. 142.

    Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012).

    PubMed  Article  CAS  Google Scholar 

  143. 143.

    Thomson, J. A. et al. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol. Reprod. 55, 254–259 (1996).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  144. 144.

    Behr, R., Heneweer, C., Viebahn, C., Denker, H. W. & Thie, M. Epithelial-mesenchymal transition in colonies of rhesus monkey embryonic stem cells: a model for processes involved in gastrulation. Stem Cells 23, 805–816 (2005).

    PubMed  Article  CAS  Google Scholar 

  145. 145.

    Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D. & Brivanlou, A. H. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  146. 146.

    Tewary, M. et al. A stepwise model of reaction-diffusion and positional-information governs self-organized human peri-gastrulation-like patterning. Development 144, 4298–4312 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  147. 147.

    Etoc, F. et al. A balance between secreted inhibitors and edge sensing controls gastruloid self-organization. Dev. Cell 39, 302–315 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  148. 148.

    Martyn, I., Kanno, T. Y., Ruzo, A., Siggia, E. D. & Brivanlou, A. H. Self-organization of a human organizer by combined Wnt and Nodal signalling. Nature 558, 132–135 (2018).

    PubMed  Article  CAS  Google Scholar 

  149. 149.

    Taniguchi, K. et al. Lumen formation is an intrinsic property of isolated human pluripotent stem cells. Stem Cell Rep. 5, 954–962 (2015).

    Article  CAS  Google Scholar 

  150. 150.

    Shao, Y. et al. Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nat. Mater. 16, 419–425 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  151. 151.

    Shao, Y. et al. A pluripotent stem cell-based model for post-implantation human amniotic sac development. Nat. Commun. 8, 208 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  152. 152.

    Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  153. 153.

    Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  154. 154.

    Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286 (2013).

    PubMed  Article  CAS  Google Scholar 

  155. 155.

    Qin, H. et al. YAP induces human naive pluripotency. Cell Rep. 14, 2301–2312 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  156. 156.

    Zimmerlin, L. et al. Tankyrase inhibition promotes a stable human naive pluripotent state with improved functionality. Development 143, 4368–4380 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  157. 157.

    Ware, C. B. et al. Derivation of naive human embryonic stem cells. Proc. Natl Acad. Sci. USA 111, 4484–4489 (2014).

    PubMed  Article  CAS  Google Scholar 

  158. 158.

    Guo, G. et al. Epigenetic resetting of human pluripotency. Development 144, 2748–2763 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  159. 159.

    Valamehr, B. et al. Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Rep. 2, 366–381 (2014).

    Article  CAS  Google Scholar 

  160. 160.

    Chan, Y. S. et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13, 663–675 (2013).

    PubMed  Article  CAS  Google Scholar 

  161. 161.

    Yang, Y. et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169, 243–257 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  162. 162.

    Aach, J., Lunshof, J., Iyer, E. & Church, G. M. Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife 6, e20674 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  163. 163.

    Gjorevski, N., Ranga, A. & Lutolf, M. P. Bioengineering approaches to guide stem cell-based organogenesis. Development 141, 1794–1804 (2014).

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose findings we could not cite due to space constraints. We are grateful to S.E. Harrison, M. Zhu, F. Antonica and M. Petruzzelli for their insightful comments. The M.Z-G lab is supported by grants from the European Research Council (669198) and the Wellcome Trust (098287/Z/12/Z). M. Shahbazi is supported by an Early Career Leverhulme Trust fellowship.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Marta N. Shahbazi or Magdalena Zernicka-Goetz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahbazi, M.N., Zernicka-Goetz, M. Deconstructing and reconstructing the mouse and human early embryo. Nat Cell Biol 20, 878–887 (2018). https://doi.org/10.1038/s41556-018-0144-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing