Review Article | Published:

Deconstructing and reconstructing the mouse and human early embryo

Nature Cell Biologyvolume 20pages878887 (2018) | Download Citation

Abstract

The emergence of form and function during mammalian embryogenesis is a complex process that involves multiple regulatory levels. The foundations of the body plan are laid throughout the first days of post-implantation development as embryonic stem cells undergo symmetry breaking and initiate lineage specification, in a process that coincides with a global morphological reorganization of the embryo. Here, we review experimental models and how they have shaped our current understanding of the post-implantation mammalian embryo.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Oppenheimer, J. M. Essays in the History of Embryology and Biology (The MIT Press, Cambridge, MA, 1967).

  2. 2.

    Tarkowski, A. K. Experiments on the development of isolated blastomers of mouse eggs. Nature 184, 1286–1287 (1959).

  3. 3.

    Gardner, R. L. Mouse chimeras obtained by the injection of cells into the blastocyst. Nature 220, 596–597 (1968).

  4. 4.

    Tarkowski, A. K. Mouse chimaeras developed from fused eggs. Nature 190, 857–860 (1961).

  5. 5.

    Zijlstra, M., Li, E., Sajjadi, F., Subramani, S. & Jaenisch, R. Germ-line transmission of a disrupted beta 2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342, 435–438 (1989).

  6. 6.

    Koller, B. H. & Smithies, O. Inactivating the beta 2-microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc. Natl Acad. Sci. USA 86, 8932–8935 (1989).

  7. 7.

    Thompson, S., Clarke, A. R., Pow, A. M., Hooper, M. L. & Melton, D. W. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56, 313–321 (1989).

  8. 8.

    Davies, J. Using synthetic biology to explore principles of development. Development 144, 1146–1158 (2017).

  9. 9.

    Pera, M. F. Human embryo research and the 14-day rule. Development 144, 1923–1925 (2017).

  10. 10.

    Hammond, J. Jr. Recovery and culture of tubal mouse ova. Nature 163, 28 (1949).

  11. 11.

    Whitten, W. K. Culture of tubal mouse ova. Nature 177, 96 (1956).

  12. 12.

    Ho, Y., Wigglesworth, K., Eppig, J. J. & Schultz, R. M. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41, 232–238 (1995).

  13. 13.

    Svoboda, P., Stein, P., Hayashi, H. & Schultz, R. M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147–4156 (2000).

  14. 14.

    Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75 (2000).

  15. 15.

    Tam, P. P. & Loebel, D. A. Gene function in mouse embryogenesis: get set for gastrulation. Nat. Rev. Genet. 8, 368–381 (2007).

  16. 16.

    Bischoff, M., Parfitt, D. E. & Zernicka-Goetz, M. Formation of the embryonic-abembryonic axis of the mouse blastocyst: relationships between orientation of early cleavage divisions and pattern of symmetric/asymmetric divisions. Development 135, 953–962 (2008).

  17. 17.

    Strnad, P. et al. Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat. Methods 13, 139–142 (2016).

  18. 18.

    Plachta, N., Bollenbach, T., Pease, S., Fraser, S. E. & Pantazis, P. Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat. Cell Biol. 13, 117–123 (2011).

  19. 19.

    White, M. D. et al. Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell 165, 75–87 (2016).

  20. 20.

    Rossant, J. & Tam, P. P. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136, 701–713 (2009).

  21. 21.

    Wang, H. & Dey, S. K. Roadmap to embryo implantation: clues from mouse models. Nat. Rev. Genet. 7, 185–199 (2006).

  22. 22.

    Bedzhov, I., Graham, S. J., Leung, C. Y. & Zernicka-Goetz, M. Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo. Philos. T. Roy., Soc. B 369, 20130538 (2014).

  23. 23.

    Macklon, N. S., Geraedts, J. P. & Fauser, B. C. Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Hum. Reprod. Update 8, 333–343 (2002).

  24. 24.

    Latos, P. A. & Hemberger, M. From the stem of the placental tree: trophoblast stem cells and their progeny. Development 143, 3650–3660 (2016).

  25. 25.

    Takaoka, K. & Hamada, H. Cell fate decisions and axis determination in the early mouse embryo. Development 139, 3–14 (2012).

  26. 26.

    Robertson, E. J. Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Semin. Cell Dev. Biol. 32, 73–79 (2014).

  27. 27.

    Stower, M. J. & Srinivas, S. Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo. Philos. T. Roy. Soc. B 369, 20130546 (2014).

  28. 28.

    Beck, S. et al. Extraembryonic proteases regulate Nodal signalling during gastrulation. Nat. Cell Biol. 4, 981–985 (2002).

  29. 29.

    Ben-Haim, N. et al. The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev. Cell 11, 313–323 (2006).

  30. 30.

    Rivera-Perez, J. A., Mager, J. & Magnuson, T. Dynamic morphogenetic events characterize the mouse visceral endoderm. Dev. Biol. 261, 470–487 (2003).

  31. 31.

    Thomas, P. & Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996).

  32. 32.

    Yamamoto, M. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428, 387–392 (2004).

  33. 33.

    Leitch, H. G., Tang, W. W. & Surani, M. A. Primordial germ-cell development and epigenetic reprogramming in mammals. Curr. Top. Dev. Biol. 104, 149–187 (2013).

  34. 34.

    Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).

  35. 35.

    Hsu, Y. C. Post-blastocyst differentiation in vitro. Nature 231, 100–102 (1971).

  36. 36.

    Hsu, Y. C. Differentiation in vitro of mouse embryos beyond the implantation stage. Nature 239, 200–202 (1972).

  37. 37.

    Jenkinson, E. J. & Wilson, I. B. In vitro support system for the study of blastocyst differentiation in the mouse. Nature 228, 776–778 (1970).

  38. 38.

    Pienkowski, M., Solter, D. & Koprowski, H. Early mouse embryos: growth and differentiation in vitro. Exp. Cell Res. 85, 424–428 (1974).

  39. 39.

    Wiley, L. M. & Pedersen, R. A. Morphology of mouse egg cylinder development in vitro: a light and electron microscopic study. J. Exp. Zool. 200, 389–402 (1977).

  40. 40.

    Wilson, I. B. & Jenkinson, E. J. Blastocyst differentiation in vitro. J. Reprod. Fertil. 39, 243–249 (1974).

  41. 41.

    Copp, A. J. The mechanism of mouse egg-cylinder morphogenesis in vitro. J. Embryol. Exp. Morphol. 61, 277–287 (1981).

  42. 42.

    Salomon, D. S. & Sherman, M. I. Implantation and invasiveness of mouse blastocysts on uterine monolayers. Exp. Cell Res. 90, 261–268 (1975).

  43. 43.

    Bedzhov, I., Leung, C. Y., Bialecka, M. & Zernicka-Goetz, M. In vitro culture of mouse blastocysts beyond the implantation stages. Nat. Protoc. 9, 2732–2739 (2014).

  44. 44.

    Morris, S. A. et al. Dynamics of anterior-posterior axis formation in the developing mouse embryo. Nat. Commun. 3, 673 (2012).

  45. 45.

    Bedzhov, I. & Zernicka-Goetz, M. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156, 1032–1044 (2014).

  46. 46.

    Li, S., Edgar, D., Fassler, R., Wadsworth, W. & Yurchenco, P. D. The role of laminin in embryonic cell polarization and tissue organization. Dev. Cell 4, 613–624 (2003).

  47. 47.

    Coucouvanis, E. & Martin, G. R. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83, 279–287 (1995).

  48. 48.

    Hoppe, P. S., Coutu, D. L. & Schroeder, T. Single-cell technologies sharpen up mammalian stem cell research. Nat. Cell Biol. 16, 919–927 (2014).

  49. 49.

    Xue, Z. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597 (2013).

  50. 50.

    Deng, Q., Ramskold, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).

  51. 51.

    Tang, F. et al. Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLoS ONE 6, e21208 (2011).

  52. 52.

    Biase, F. H., Cao, X. & Zhong, S. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Res. 24, 1787–1796 (2014).

  53. 53.

    Shi, J. et al. Dynamic transcriptional symmetry-breaking in pre-implantation mammalian embryo development revealed by single-cell RNA-seq. Development 142, 3468–3477 (2015).

  54. 54.

    Goolam, M. et al. Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165, 61–74 (2016).

  55. 55.

    Kalkan, T. & Smith, A. Mapping the route from naive pluripotency to lineage specification. Philos. T. Roy. Soc. B 369, 20130540 (2014).

  56. 56.

    Boroviak, T. et al. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35, 366–382 (2015).

  57. 57.

    Mohammed, H. et al. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep. 20, 1215–1228 (2017).

  58. 58.

    De Los Angeles, A. et al. Hallmarks of pluripotency. Nature 525, 469–478 (2015).

  59. 59.

    Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 17, 155–169 (2016).

  60. 60.

    Nichols, J. & Smith, A. Pluripotency in the embryo and in culture. Cold Spring Harb. Persp. Biol. 4, a008128 (2012).

  61. 61.

    Shahbazi, M. N. et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature 552, 239–243 (2017).

  62. 62.

    Scognamiglio, R. et al. Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164, 668–680 (2016).

  63. 63.

    Bulut-Karslioglu, A. et al. Inhibition of mTOR induces a paused pluripotent state. Nature 540, 119–123 (2016).

  64. 64.

    Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

  65. 65.

    Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

  66. 66.

    Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985).

  67. 67.

    Martin, G. R. & Evans, M. J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl Acad. Sci. USA 72, 1441–1445 (1975).

  68. 68.

    Pierce, G. B. Jr. & Verney, E. L. An in vitro and in vivo study of differentiation in teratocarcinomas. Cancer 14, 1017–1029 (1961).

  69. 69.

    Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

  70. 70.

    ten Berge, D. et al. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3, 508–518 (2008).

  71. 71.

    Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

  72. 72.

    Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

  73. 73.

    van den Brink, S. C. et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141, 4231–4242 (2014).

  74. 74.

    Marikawa, Y., Tamashiro, D. A., Fujita, T. C. & Alarcon, V. B. Aggregated P19 mouse embryonal carcinoma cells as a simple in vitro model to study the molecular regulations of mesoderm formation and axial elongation morphogenesis. Genesis 47, 93–106 (2009).

  75. 75.

    Fuchs, C. et al. Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis. Cells Tissues Organs 195, 377–391 (2012).

  76. 76.

    Turner, D. A. et al. Anteroposterior polarity and elongation in the absence of extraembryonic tissues and spatially localised signalling in Gastruloids, mammalian embryonic organoids. Development 144, 3894–3906 (2017).

  77. 77.

    Simunovic, M. & Brivanlou, A. H. Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development 144, 976–985 (2017).

  78. 78.

    Simian, M. & Bissell, M. J. Organoids: A historical perspective of thinking in three dimensions. J. Cell Biol. 216, 31–40 (2017).

  79. 79.

    Lee, E. Y., Parry, G. & Bissell, M. J. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98, 146–155 (1984).

  80. 80.

    Montesano, R., Schaller, G. & Orci, L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66, 697–711 (1991).

  81. 81.

    O’Brien, L. E., Zegers, M. M. & Mostov, K. E. Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3, 531–537 (2002).

  82. 82.

    Poh, Y. C. et al. Generation of organized germ layers from a single mouse embryonic stem cell. Nat. Commun. 5, 4000 (2014).

  83. 83.

    Denker, H. W. Self-organization of stem cell colonies and of early mammalian embryos: recent experiments shed new light on the role of autonomy vs. external instructions in basic body plan development. Cells 5, E39 (2016).

  84. 84.

    Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

  85. 85.

    Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

  86. 86.

    Kojima, Y. et al. The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell 14, 107–120 (2014).

  87. 87.

    Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S. & Saitou, M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519–532 (2011).

  88. 88.

    Smith, A. Formative pluripotency: the executive phase in a developmental continuum. Development 144, 365–373 (2017).

  89. 89.

    Morgani, S. M., Metzger, J. J., Nichols, J., Siggia, E. D. & Hadjantonakis, A. K. Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning. eLife 7, e32839 (2018).

  90. 90.

    Kunath, T. et al. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132, 1649–1661 (2005).

  91. 91.

    Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

  92. 92.

    Harrison, S. E., Sozen, B., Christodoulou, N., Kyprianou, C. & Zernicka-Goetz, M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 356, eaal1810 (2017).

  93. 93.

    Rivron, N. C. et al. Blastocyst-like structures generated solely from stem cells. Nature 557, 106–111 (2018).

  94. 94.

    Kime, C. K. H. et al. Implantation-competent blastocyst-like structures from mouse pluripotent stem cells. bioRxiv. https://doi.org/10.1101/309542 (2018).

  95. 95.

    Sozen, B. A. et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo structures. Nat. Cell Biol. https://doi.org/10.1038/s41556-018-0147-7 (2018).

  96. 96.

    Peng, G. et al. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev. Cell 36, 681–697 (2016).

  97. 97.

    Edwards, R. G., Bavister, B. D. & Steptoe, P. C. Early stages of fertilization in vitro of human oocytes matured in vitro. Nature 221, 632–635 (1969).

  98. 98.

    Rock, J. & Menkin, M. F. In vitro fertilization and cleavage of human ovarian eggs. Science 100, 105–107 (1944).

  99. 99.

    Edwards, R. G., Steptoe, P. C. & Purdy, J. M. Fertilization and cleavage in vitro of preovulator human oocytes. Nature 227, 1307–1309 (1970).

  100. 100.

    Menezo, Y., Testart, J. & Perrone, D. Serum is not necessary in human in vitro fertilization, early embryo culture, and transfer. Fertil. Steril. 42, 750–755 (1984).

  101. 101.

    Niakan, K. K. & Eggan, K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 375, 54–64 (2013).

  102. 102.

    Petropoulos, S. et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).

  103. 103.

    Braude, P., Bolton, V. & Moore, S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332, 459–461 (1988).

  104. 104.

    Dobson, A. T. et al. The unique transcriptome through day 3 of human preimplantation development. Hum. Mol. Genet. 13, 1461–1470 (2004).

  105. 105.

    Zhu, P. et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet. 50, 12–19 (2018).

  106. 106.

    Stirparo, G. G. et al. Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. Development 145, 158501 (2018).

  107. 107.

    Fogarty, N. M. E. et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550, 67–73 (2017).

  108. 108.

    Wamaitha, S. E. & Niakan, K. K. Human Pre-gastrulation Development. Curr. Top. Dev. Biol. 128, 295–338 (2018).

  109. 109.

    Koot, Y. E., Teklenburg, G., Salker, M. S., Brosens, J. J. & Macklon, N. S. Molecular aspects of implantation failure. Biochim. Biophys. Acta 1822, 1943–1950 (2012).

  110. 110.

    Weimar, C. H., Post Uiterweer, E. D., Teklenburg, G., Heijnen, C. J. & Macklon, N. S. In-vitro model systems for the study of human embryo-endometrium interactions. Reprod. Biomed. Online 27, 461–476 (2013).

  111. 111.

    Lindenberg, S., Nielsen, M. H. & Lenz, S. In vitro studies of human blastocyst implantation. Ann. NY Acad. Sci. 442, 368–374 (1985).

  112. 112.

    Hertig, A. T., Rock, J. & Adams, E. C. A description of 34 human ova within the first 17 days of development. Am. J. Anat. 98, 435–493 (1956).

  113. 113.

    Hertig, A. T. On the development of the amnion and exoccelomic membrane in the previllous human ovum. Yale J. Biol. Med. 18, 107–115 (1945).

  114. 114.

    Hertig, A. T. Angiogenesis in the early human chorion and in the primary placenta of the macaque monkey. Contrib. Embryol. 25, 37–82 (1935).

  115. 115.

    Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63 (2018).

  116. 116.

    Burton, G. J. & Fowden, A. L. The placenta: a multifaceted, transient organ. Philos. T. Roy. Soc. B 370, 20140066 (2015).

  117. 117.

    Luckett, W. P. Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am. J. Anat. 152, 59–97 (1978).

  118. 118.

    Pereira, P. N. et al. Amnion formation in the mouse embryo: the single amniochorionic fold model. BMC Dev. Biol. 11, 48 (2011).

  119. 119.

    Witschi, E. Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contrib. Embryol. 32, 67–80 (1948).

  120. 120.

    Luckett, W. P. The development of primordial and definitive amniotic cavities in early Rhesus monkey and human embryos. Am. J. Anat. 144, 149–167 (1975).

  121. 121.

    Hill, J. P. The developmental history of the primates. Philos. T. Roy. Soc. B 221, 45–178 (1932).

  122. 122.

    Enders, A. C., Schlafke, S. & Hendrickx, A. G. Differentiation of the embryonic disc, amnion, and yolk sac in the rhesus monkey. Am. J. Anat. 177, 161–185 (1986).

  123. 123.

    Enders, A. C. & King, B. F. Formation and differentiation of extraembryonic mesoderm in the rhesus monkey. Am. J. Anat. 181, 327–340 (1988).

  124. 124.

    Sasaki, K. et al. The germ cell fate of Cynomolgus monkeys is specified in the nascent amnion. Dev. Cell 39, 169–185 (2016).

  125. 125.

    Kobayashi, T. et al. Principles of early human development and germ cell program from conserved model systems. Nature 546, 416–420 (2017).

  126. 126.

    Irie, N. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253–268 (2015).

  127. 127.

    Sasaki, K. et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17, 178–194 (2015).

  128. 128.

    Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).

  129. 129.

    Deglincerti, A. et al. Self-organization of the in vitro attached human embryo. Nature 533, 251–254 (2016).

  130. 130.

    Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).

  131. 131.

    Ma, H. et al. Correction of a pathogenic gene mutation in human embryos. Nature 548, 413–419 (2017).

  132. 132.

    Kang, X. et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J. Assist. Reprod. Genet. 33, 581–588 (2016).

  133. 133.

    Liang, P. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6, 363–372 (2015).

  134. 134.

    Mascetti, V. L. & Pedersen, R. A. Human-mouse chimerism validates human stem cell pluripotency. Cell Stem Cell 18, 67–72 (2016).

  135. 135.

    Wu, J. et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature 521, 316–321 (2015).

  136. 136.

    Wu, J. et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486 (2017).

  137. 137.

    James, D., Noggle, S. A., Swigut, T. & Brivanlou, A. H. Contribution of human embryonic stem cells to mouse blastocysts. Dev. Biol. 295, 90–102 (2006).

  138. 138.

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

  139. 139.

    Itskovitz-Eldor, J. et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6, 88–95 (2000).

  140. 140.

    Sharon, N., Mor, I., Golan-lev, T., Fainsod, A. & Benvenisty, N. Molecular and functional characterizations of gastrula organizer cells derived from human embryonic stem cells. Stem Cells 29, 600–608 (2011).

  141. 141.

    Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

  142. 142.

    Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012).

  143. 143.

    Thomson, J. A. et al. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol. Reprod. 55, 254–259 (1996).

  144. 144.

    Behr, R., Heneweer, C., Viebahn, C., Denker, H. W. & Thie, M. Epithelial-mesenchymal transition in colonies of rhesus monkey embryonic stem cells: a model for processes involved in gastrulation. Stem Cells 23, 805–816 (2005).

  145. 145.

    Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D. & Brivanlou, A. H. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014).

  146. 146.

    Tewary, M. et al. A stepwise model of reaction-diffusion and positional-information governs self-organized human peri-gastrulation-like patterning. Development 144, 4298–4312 (2017).

  147. 147.

    Etoc, F. et al. A balance between secreted inhibitors and edge sensing controls gastruloid self-organization. Dev. Cell 39, 302–315 (2016).

  148. 148.

    Martyn, I., Kanno, T. Y., Ruzo, A., Siggia, E. D. & Brivanlou, A. H. Self-organization of a human organizer by combined Wnt and Nodal signalling. Nature 558, 132–135 (2018).

  149. 149.

    Taniguchi, K. et al. Lumen formation is an intrinsic property of isolated human pluripotent stem cells. Stem Cell Rep. 5, 954–962 (2015).

  150. 150.

    Shao, Y. et al. Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nat. Mater. 16, 419–425 (2016).

  151. 151.

    Shao, Y. et al. A pluripotent stem cell-based model for post-implantation human amniotic sac development. Nat. Commun. 8, 208 (2017).

  152. 152.

    Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

  153. 153.

    Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

  154. 154.

    Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286 (2013).

  155. 155.

    Qin, H. et al. YAP induces human naive pluripotency. Cell Rep. 14, 2301–2312 (2016).

  156. 156.

    Zimmerlin, L. et al. Tankyrase inhibition promotes a stable human naive pluripotent state with improved functionality. Development 143, 4368–4380 (2016).

  157. 157.

    Ware, C. B. et al. Derivation of naive human embryonic stem cells. Proc. Natl Acad. Sci. USA 111, 4484–4489 (2014).

  158. 158.

    Guo, G. et al. Epigenetic resetting of human pluripotency. Development 144, 2748–2763 (2017).

  159. 159.

    Valamehr, B. et al. Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Rep. 2, 366–381 (2014).

  160. 160.

    Chan, Y. S. et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13, 663–675 (2013).

  161. 161.

    Yang, Y. et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169, 243–257 (2017).

  162. 162.

    Aach, J., Lunshof, J., Iyer, E. & Church, G. M. Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife 6, e20674 (2017).

  163. 163.

    Gjorevski, N., Ranga, A. & Lutolf, M. P. Bioengineering approaches to guide stem cell-based organogenesis. Development 141, 1794–1804 (2014).

Download references

Acknowledgements

We apologize to our colleagues whose findings we could not cite due to space constraints. We are grateful to S.E. Harrison, M. Zhu, F. Antonica and M. Petruzzelli for their insightful comments. The M.Z-G lab is supported by grants from the European Research Council (669198) and the Wellcome Trust (098287/Z/12/Z). M. Shahbazi is supported by an Early Career Leverhulme Trust fellowship.

Author information

Affiliations

  1. Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK

    • Marta N. Shahbazi
    •  & Magdalena Zernicka-Goetz

Authors

  1. Search for Marta N. Shahbazi in:

  2. Search for Magdalena Zernicka-Goetz in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Marta N. Shahbazi or Magdalena Zernicka-Goetz.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41556-018-0144-x