Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring

Abstract

The complex relationships between continuously monitored health signals and therapeutic regimens can be modelled via machine learning. However, the clinical implementation of the models will require changes to clinical workflows. Here we outline ClinAIOps (‘clinical artificial-intelligence operations’), a framework that integrates continuous therapeutic monitoring and the development of artificial intelligence (AI) for clinical care. ClinAIOps leverages three feedback loops to enable the patient to make treatment adjustments using AI outputs, the clinician to oversee patient progress with AI assistance, and the AI developer to receive continuous feedback from both the patient and the clinician. We lay out the central challenges and opportunities in the deployment of ClinAIOps by means of examples of its application in the management of blood pressure, diabetes and Parkinson’s disease. By enabling more frequent and accurate measurements of a patient’s health and more timely adjustments to their treatment, ClinAIOps may substantially improve patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ClinAIOps connects stakeholders via feedback loops.
Fig. 2: Timeline of the application of ClinAIOps to CTM, and the roles of patients, clinicians and AI developers.
Fig. 3: Interactions involved in the application of ClinAIOps to the monitoring of patients with PD, atrial fibrillation or hypertension.
Fig. 4: Feedback loops in the application of ClinAIOps to the management of blood pressure.

Similar content being viewed by others

References

  1. Tison, G. H. et al. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol. 3, 409–416 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dörr, M. et al. The WATCH AF Trial: SmartWATCHes for detection of atrial fibrillation. JACC Clin. Electrophysiol. 5, 199–208 (2019).

    Article  PubMed  Google Scholar 

  3. Galindo, R. J. et al. Continuous glucose monitors and automated insulin dosing systems in the hospital consensus guideline. J. Diabetes Sci. Technol. 14, 1035–1064 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Johnston, L., Wang, G., Hu, K., Qian, C. & Liu, G. Advances in biosensors for continuous glucose monitoring towards wearables. Front. Bioeng. Biotechnol. 9, 733810 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martens, T. et al. Effect of continuous glucose monitoring on glycemic control in patients with Type 2 diabetes treated with basal insulin: a randomized clinical trial. JAMA 325, 2262–2272 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Tschider, C. A. Medical device artificial intelligence: the new tort frontier. BYU Law Rev. 46, 1551 (2020).

    Google Scholar 

  7. Simon, D. A., Shachar, C. & Glenn Cohen, I. Unsettled liability issues for ‘prediagnostic’ wearables and health-related products. JAMA 328, 1391–1392 (2022).

    Article  PubMed  Google Scholar 

  8. Benroubi, M. Fear, guilt feelings and misconceptions: barriers to effective insulin treatment in type 2 diabetes. Diabetes Res. Clin. Pract. 93, S97–S99 (2011).

    Article  PubMed  Google Scholar 

  9. Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Berwick, D. M., Nolan, T. W. & Whittington, J. The triple aim: care, health and cost. Health Aff. 27, 759–769 (2008).

    Article  Google Scholar 

  11. Assadi, A. et al. An integration engineering framework for machine learning in healthcare. Front. Digit. Health 4, 932411 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Breaux-Shropshire, T. L., Judd, E., Vucovich, L. A., Shropshire, T. S. & Singh, S. Does home blood pressure monitoring improve patient outcomes? A systematic review comparing home and ambulatory blood pressure monitoring on blood pressure control and patient outcomes. Integr. Blood Press. Control 8, 43–49 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Siontis, K. C., Noseworthy, P. A., Attia, Z. I. & Friedman, P. A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 18, 465–478 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Attia, Z. I. et al. Novel bloodless potassium determination using a signal‐processed single‐lead ECG. J. Am. Heart Assoc. 5, e002746 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goud, K. Y. et al. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward Parkinson management. ACS Sens. 4, 2196–2204 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Powers, R. et al. Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson’s disease. Sci. Transl. Med. 13, eabd7865 (2021).

    Article  PubMed  Google Scholar 

  17. Fletcher, R. R., Tam, S., Omojola, O., Redemske, R. & Kwan, J. Wearable sensor platform and mobile application for use in cognitive behavioral therapy for drug addiction and PTSD. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 1802–1805 (2011).

    Google Scholar 

  18. Russell-Jones, D., Pouwer, F. & Khunti, K. Identification of barriers to insulin therapy and approaches to overcoming them. Diabetes Obes. Metab. 20, 488–496 (2018).

    Article  PubMed  Google Scholar 

  19. Przezak, A., Bielka, W. & Molęda, P. Fear of hypoglycemia—an underestimated problem. Brain Behav. 12, e2633 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yeh, T., Yeung, M. & Mendelsohn Curanaj, F. A. Managing patients with insulin pumps and continuous glucose monitors in the hospital: to wear or not to wear. Curr. Diab. Rep. 21, 7 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Waks, J. W. et al. Intermittent anticoagulation guided by continuous atrial fibrillation burden monitoring using dual-chamber pacemakers and implantable cardioverter-defibrillators: results from the Tailored Anticoagulation for Non-Continuous Atrial Fibrillation (TACTIC-AF) pilot study. Heart Rhythm 15, 1601–1607 (2018).

    Article  PubMed  Google Scholar 

  22. Passman, R. et al. Targeted anticoagulation for atrial fibrillation guided by continuous rhythm assessment with an insertable cardiac monitor: the rhythm evaluation for anticoagulation with continuous monitoring (React.com) pilot study. J. Cardiovasc. Electrophysiol 27, 264–270 (2016).

    Article  PubMed  Google Scholar 

  23. Wasserlauf, J. et al. Smartwatch performance for the detection and quantification of atrial fibrillation. Circ. Arrhythm. Electrophysiol. 12, e006834 (2019).

    Article  PubMed  Google Scholar 

  24. Leading science, research and technology leaders join forces to accelerate REACT-AF trial. American Heart Association (29 August 2022).

  25. Bienefeld, N. et al. Solving the explainable AI conundrum by bridging clinicians’ needs and developers’ goals. NPJ Digit. Med. 6, 94 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Attig, C. & Franke, T. Abandonment of personal quantification: a review and empirical study investigating reasons for wearable activity tracking attrition. Comput. Hum. Behav. 102, 223–237 (2020).

    Article  Google Scholar 

  27. Wang, T. et al. Identifying major impact factors affecting the continuance intention of mHealth: a systematic review and multi-subgroup meta-analysis. NPJ Digit. Med. 5, 145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meyerowitz-Katz, G. et al. Rates of attrition and dropout in app-based interventions for chronic disease: systematic review and meta-analysis. J. Med. Internet Res. 22, e20283 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Helander, E., Kaipainen, K., Korhonen, I. & Wansink, B. Factors related to sustained use of a free mobile app for dietary self-monitoring with photography and peer feedback: retrospective cohort study. J. Med. Internet Res. 16, e109 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu, S., Kim, J., Walter, J. R., Ghaffari, R. & Rogers, J. A. Translational gaps and opportunities for medical wearables in digital health. Sci. Transl. Med. 14, eabn6036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Y., Suda, N., Lai, L. & Chandra, V. Hello Edge: keyword spotting on microcontrollers. Preprint at https://arxiv.org/abs/1711.07128 (2017).

  32. Basaklar, T., Tuncel, Y., An, S. & Ogras, U. Wearable devices and low-power design for smart health applications: challenges and opportunities. In Proc. 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED) (eds Li, H. & Augustine, C.) 1 (IEEE, 2021).

  33. Sundrani, S. et al. Predicting patient decompensation from continuous physiologic monitoring in the emergency department. NPJ Digit. Med. 6, 60 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jackson, C., Shahsahebi, M., Wedlake, T. & DuBard, C. A. Timeliness of outpatient follow-up: an evidence-based approach for planning after hospital discharge. Ann. Fam. Med. 13, 115–122 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Erb, M. K. et al. mHealth and wearable technology should replace motor diaries to track motor fluctuations in Parkinsonas disease.npj Digit. Med. 3, 6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Steinkirchner, A. B. et al. Self-report of chronic diseases in old-aged individuals: extent of agreement with general practitioner medical records in the German AugUR study. J. Epidemiol. Community Health 76, 931–938 (2022).

    Article  PubMed  Google Scholar 

  37. Pirtošek, Z. et al. Update on the management of Parkinson’s disease for general neurologists. Parkinsonas Dis 2020, 9131474 (2020).

    Google Scholar 

  38. Shalash, A., Spindler, M. & Cubo, E. Global perspective on telemedicine for Parkinson’s disease. J. Parkinsons Dis. 11, S11–S18 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Greenland, J. C., Williams-Gray, C. H. & Barker, R. A. The clinical heterogeneity of Parkinson’s disease and its therapeutic implications. Eur. J. Neurosci. 49, 328–338 (2019).

    Article  PubMed  Google Scholar 

  40. Drew, B. J. et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS ONE 9, e110274 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chromik, J. et al. Computational approaches to alleviate alarm fatigue in intensive care medicine: a systematic literature review. Front. Digit. Health 4, 843747 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nimri, R. et al. Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nat. Med. 26, 1380–1384 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Zarrinpar, A. et al. Individualizing liver transplant immunosuppression using a phenotypic personalized medicine platform. Sci. Transl. Med. 8, 333ra49 (2016).

    Article  PubMed  Google Scholar 

  44. Pantuck, A. J. et al. Modulating BET bromodomain inhibitor ZEN-3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE.AI, an artificial intelligence platform. Adv. Ther. 1, 1800104 (2018).

    Article  Google Scholar 

  45. Kee, T. et al. Harnessing CURATE.AI as a digital therapeutics platform by identifying N-of-1 learning trajectory profiles. Adv. Ther. 2, 1900023 (2019).

    Article  Google Scholar 

  46. Liang, W. et al. Advances, challenges and opportunities in creating data for trustworthy AI. Nat. Mach. Intell. 4, 669–677 (2022).

    Article  Google Scholar 

  47. Zhang, A., Xing, L., Zou, J. & Wu, J. C. Shifting machine learning for healthcare from development to deployment and from models to data. Nat. Biomed. Eng. 6, 1330–1345 (2022).

    Article  PubMed  Google Scholar 

  48. Feng, J. et al. Clinical artificial intelligence quality improvement: towards continual monitoring and updating of AI algorithms in healthcare. NPJ Digit. Med. 5, 66 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tang, J. et al. Corrigendum: application of machine-learning models to predict tacrolimus stable dose in renal transplant recipients. Sci. Rep. 8, 46936 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu, R., Li, X., Zhang, W. & Zhou, H.-H. Comparison of nine statistical model based warfarin pharmacogenetic dosing algorithms using the racially diverse International Warfarin Pharmacogenetic Consortium cohort database. PLoS ONE 10, e0135784 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhu, X. et al. A machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters. Sci. Rep. 11, 5568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jovanović, M. et al. Application of counter-propagation artificial neural networks in prediction of topiramate concentration in patients with epilepsy. J. Pharm. Pharm. Sci. 18, 856–862 (2015).

    Article  PubMed  Google Scholar 

  53. Tsichlaki, S., Koumakis, L. & Tsiknakis, M. Type 1 diabetes hypoglycemia prediction algorithms: systematic review. JMIR Diabetes 7, e34699 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. US Food and Drug Administration et al. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-based Software as a Medical Device (SaMD) (US FDA, 019).

  55. Salama, K., Kazmierczak, J. & Schut, D. Practitioners Guide to MLOps: A Framework for Continuous Delivery and Automation of Machine Learning (Google, 2021).

  56. Utsumil, Y., Rudovicl, O. O., Petersonl, K., Guerrero, R. & Picardl, R. W. Personalized Gaussian processes for forecasting of Alzheimer’s Disease Assessment Scale-Cognition sub-scale (ADAS-Cog13). Conf. Proc. IEEE Eng. Med. Biol. Soc. 2018, 4007–4011 (2018).

    Google Scholar 

  57. Liu, K. et al. Development and validation of a personalized model with transfer learning for acute kidney injury risk estimation using electronic health records. JAMA Netw. Open 5, e2219776 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hard, A. et al. Federated learning for mobile keyboard prediction. Preprint at https://arxiv.org/abs/1811.03604 (2018).

  59. Agarwal, R. Rehospitalization rates in hypertensive emergency. Hypertension 73, 49–51 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Miller, J., McNaughton, C., Joyce, K., Binz, S. & Levy, P. Hypertension management in emergency departments. Am. J. Hypertens. 33, 927–934 (2020).

    PubMed  PubMed Central  Google Scholar 

  61. Block, R. C. et al. Conventional pulse transit times as markers of blood pressure changes in humans. Sci. Rep. 10, 16373 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nabeel, P. M., Jayaraj, J. & Mohanasankar, S. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique. Physiol. Meas. 38, 2122–2140 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Islam, S. M. S. et al. Wearable cuffless blood pressure monitoring devices: a systematic review and meta-analysis. Eur. Heart J. Digit. Health 3, 323–337 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zheng, Y.-L., Yan, B. P., Zhang, Y.-T. & Poon, C. C. Y. An armband wearable device for overnight and cuff-less blood pressure measurement. IEEE Trans. Biomed. Eng. 61, 2179–2186 (2014).

    Article  PubMed  Google Scholar 

  65. AI for Anti-Hypertensive Medication Titration (NIH NCBI, accessed 1 October 2023); https://clinicaltrials.gov/ct2/show/NCT05376683

  66. Morawski, K. et al. Association of a Smartphone application with medication adherence and blood pressure control: the MedISAFE-BP randomized clinical trial. JAMA Intern. Med. 178, 802–809 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Baumann, B. M. et al. Provider self-report and practice: reassessment and referral of emergency department patients with elevated blood pressure. Am. J. Hypertens. 22, 604–610 (2009).

    Article  PubMed  Google Scholar 

  68. National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Committee on Women in Science, Engineering, and Medicine & Committee on Improving the Representation of Women and Underrepresented Minorities in Clinical Trials and Research. Improving Representation in Clinical Trials and Research: Building Research Equity for Women and Underrepresented Groups (National Academies Press, 2022).

  69. Hoel, A. W. et al. Under-representation of women and ethnic minorities in vascular surgery randomized controlled trials. J. Vasc. Surg. 50, 349–354 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Adam, G. et al. Machine learning approaches to drug response prediction: challenges and recent progress. NPJ Precis. Oncol. 4, 19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Goyal, M., Ospel, J. M., Kappelhof, M. & Ganesh, A. Challenges of outcome prediction for acute stroke treatment decisions. Stroke 52, 1921–1928 (2021).

    Article  PubMed  Google Scholar 

  72. Okumura, K. et al. Comparing patient and physician risk tolerance for bleeding events associated with anticoagulants in atrial fibrillation-evidence from the United States and Japan. Value in Health Regional Issues 6, 65–72 (2015).

    Article  PubMed  Google Scholar 

  73. Wiktorski, T. Challenges in causal inference from personal monitoring devices. In Proc. Federated Conference on Computer Science and Information Systems (ed. Jassem, K.) 99–102 (PTI, 2018).

  74. Causality in digital medicine. Nat. Commun. 12, 5471 (2021).

  75. Nogueira, A. R., Gama, J. & Ferreira, C. A. Improving prediction with causal probabilistic variables. In Proc. Advances in Intelligent Data Analysis XVIII (eds Berthold, M., Feelders, A. & Krempl, G.) 379–390 (Springer, 2020).

  76. Deng, C., Ji, X., Rainey, C., Zhang, J. & Lu, W. Integrating machine learning with human knowledge. iScience 23, 101656 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Taylor, L. et al. Using virtual representations in mHealth application interventions for health-related behaviour change: a systematic review. Cogent Psychol. 9, 2069906 (2022).

    Article  Google Scholar 

  78. El-Gayar, O., Ofori, M. & Nawar, N. On the efficacy of behavior change techniques in mHealth for self-management of diabetes: a meta-analysis. J. Biomed. Inform. 119, 103839 (2021).

    Article  PubMed  Google Scholar 

  79. Jakob, R. et al. Factors influencing adherence to mHealth apps for prevention or management of noncommunicable diseases: systematic review. J. Med. Internet Res. 24, e35371 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Everett, E. M. et al. A longitudinal view of disparities in insulin pump use among youth with type 1 diabetes: the SEARCH for Diabetes in Youth Study. Diabetes Technol. Ther. 25, 131–139 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Davis, K. & Guterman, S. Rewarding excellence and efficiency in Medicare payments. Milbank Q. 85, 449–468 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Crowson, M. G. & Chan, T. C. Y. Machine learning as a catalyst for value-based health care. J. Med. Syst. 44, 139 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Karargyris for helpful feedback.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the content, reviewed and edited the manuscript, and agreed to the final version of the manuscript.

Corresponding authors

Correspondence to Emma Chen or Pranav Rajpurkar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks David Bates, Randall Moorman and Xiangrong Liu for their contributions to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, E., Prakash, S., Janapa Reddi, V. et al. A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring. Nat. Biomed. Eng (2023). https://doi.org/10.1038/s41551-023-01115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-023-01115-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research