Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A hydrogel-based mechanical metamaterial for the interferometric profiling of extracellular vesicles in patient samples

Abstract

The utility of mechanical metamaterials for biomedical applications has seldom been explored. Here we show that a metamaterial that is mechanically responsive to antibody-mediated biorecognition can serve as an optical interferometric mask to molecularly profile extracellular vesicles in ascites fluid from patients with cancer. The metamaterial consists of a hydrogel responsive to temperature and redox activity functionalized with antibodies to surface biomarkers on extracellular vesicles, and is patterned into micrometric squares on a gold-coated glass substrate. Through plasmonic heating, the metamaterial is maintained in a transition state between a relaxed form and a buckled state. Binding of extracellular vesicles from the patient samples to the antibodies on the hydrogel causes it to undergo crosslinking, induced by free radicals generated via the activity of horseradish peroxidase conjugated to the antibodies. Hydrogel crosslinking causes the metamaterial to undergo fast chiral re-organization, inducing amplified changes in its mechanical deformation and diffraction patterns, which are detectable by a smartphone camera. The mechanical metamaterial may find broad utility in the sensitive optical immunodetection of biomolecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Critically locked mechanical metamaterial for amplified molecular profiling.
Fig. 2: Critical point in pattern transformation.
Fig. 3: Plasmonic locking of the critical point.
Fig. 4: Interferometric projection of metamaterial deformation.
Fig. 5: MORPH for the profiling of exosomes in patient samples.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analyzed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding author on reasonable request.

Code availability

The custom code used for the statistical analyses is available from the corresponding author on reasonable request.

References

  1. Bertoldi, K., Vitelli, V., Christensen, J. & Hecke, M. V. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

    Article  CAS  Google Scholar 

  2. Kadic, M., Milton, G. W., Hecke, V. M. & Wegener, M. 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019).

    Article  Google Scholar 

  3. Lee, J. B. et al. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol. 7, 816–820 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Nicolaou, Z. G. & Motter, A. E. Mechanical metamaterials with negative compressibility transitions. Nat. Mater. 11, 608–613 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Surjadi, J. U. et al. Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. 21, 1800864 (2019).

    Article  CAS  Google Scholar 

  7. Babaee, S. et al. Bioinspired kirigami metasurfaces as assistive shoe grips. Nat. Biomed. Eng. 4, 778–786 (2020).

    Article  PubMed  Google Scholar 

  8. Wegst, U. G., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Laronda, M. M. et al. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat. Commun. 8, 15261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, H., Guo, X., Wu, J., Fang, D. & Zhang, Y. Soft mechanical metamaterials with unusual swelling behavior and tunable stress–strain curves. Sci. Adv. 4, eaar8535 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).

    Article  CAS  Google Scholar 

  13. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2017).

    Article  CAS  Google Scholar 

  14. Zhang, S. et al. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat. Mater. 14, 1065–1071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng, Y. et al. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection. Nat. Commun. 6, 8797 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Chin, S. Y. et al. Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Sci. Robot 2, eaah6451 (2017).

    Article  Google Scholar 

  17. Yeh, J. et al. Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials 27, 5391–5398 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    Article  PubMed  Google Scholar 

  19. Lubensky, T. C., Kane, C. L., Mao, X., Souslov, A. & Sun, K. Phonons and elasticity in critically coordinated lattices. Rep. Prog. Phys. 78, 073901 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Tenje, M. et al. A practical guide to microfabrication and patterning of hydrogels for biomimetic cell culture scaffolds. Organs-on-a-Chip 2, 100003 (2020).

    Article  Google Scholar 

  21. Shi, Q. et al. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Mater. 11, 64 (2019).

    Article  CAS  Google Scholar 

  22. Buenger, D., Topuz, F. & Groll, J. Hydrogels in sensing applications. Prog. Polym. Sci. 37, 1678–1719 (2012).

    Article  CAS  Google Scholar 

  23. Andaloussi, S. E. L., Mäger, I., Breakefield, X. O. & Wood, M. J. A. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013).

    Article  PubMed  Google Scholar 

  24. Shao, H. et al. New technologies for analysis of extracellular vesicles. Chem. Rev. 118, 1917–1950 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Son, J. H. et al. Ultrafast photonic PCR. Light Sci. Appl. 4, e280–e280 (2015).

    Article  CAS  Google Scholar 

  27. Han, F., Soeriyadi, A. H. & Gooding, J. J. Reversible thermoresponsive plasmonic core-satellite nanostructures that exhibit both expansion and contraction (UCST and LCST). Macromol. Rapid Commun. 39, e1800451 (2018).

    Article  PubMed  Google Scholar 

  28. Tanaka, T. & Fillmore, D. J. Kinetics of swelling of gels. J. Chem. Phys. 70, 1214–1218 (1979).

    Article  CAS  Google Scholar 

  29. Miyata, T., Uragami, T. & Nakamae, K. Biomolecule-sensitive hydrogels. Adv. Drug Deliv. Rev. 54, 79–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Cai, S., Bertoldi, K., Wang, H. & Suo, Z. Osmotic collapse of a void in an elastomer: breathing, buckling and creasing. Soft Matter 6, 5770 (2010).

    Article  CAS  Google Scholar 

  31. Xin, H., Namgung, B. & Lee, L. P. Nanoplasmonic optical antennas for life sciences and medicine. Nat. Rev. Mater. 3, 228–243 (2018).

    Article  CAS  Google Scholar 

  32. Palmer, E. W., Hutley, M. C., Franks, A., Verrill, J. F. & Gale, B. Diffraction gratings. Rep. Prog. Phys. 38, 975–1048 (1975).

    Article  CAS  Google Scholar 

  33. Lim, C. Z. J., Zhang, L., Zhang, Y., Sundah, N. R. & Shao, H. New sensors for extracellular vesicles: insights on constituent and associated biomarkers. ACS Sens. 5, 4–12 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Shao, H. et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat. Med. 18, 1835–1840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32, 490–495 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, X. et al. Exosome-templated nanoplasmonics for multiparametric molecular profiling. Sci. Adv. 6, eaba2556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hohman, J. R., Givens, R. S., Carlson, R. G. & Orosz, G. Synthesis and chemiluminescence of a protected peroxyoxalate. Tetrahedron Lett. 37, 8273–8276 (1996).

    Article  CAS  Google Scholar 

  38. Liu, M., Ishida, Y., Ebina, Y., Sasaki, T. & Aida, T. Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers. Nat. Commun. 4, 2029 (2013).

    Article  PubMed  Google Scholar 

  39. Carey, F. A. & Sundberg, R. J. Advanced Organic Chemistry (Springer Science & Business Media, 2007).

  40. Foucard, L. C., Price, J. K., Klug, W. S. & Levine, A. J. Cooperative buckling and the nonlinear mechanics of nematic semiflexible networks. Nonlinearity 28, 89–112 (2015).

    Article  Google Scholar 

  41. Wang, D., Hu, Y., Liu, P. & Luo, D. Bioresponsive DNA hydrogels: beyond the conventional stimuli responsiveness. Acc. Chem. Res. 50, 733–739 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Ho, N. R. Y. et al. Visual and modular detection of pathogen nucleic acids with enzyme–DNA molecular complexes. Nat. Commun. 9, 3238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sundah, N. R. et al. Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution. Nat. Biomed. Eng. 3, 684–694 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Jiang, Y. et al. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater. 30, e1706589 (2018).

    Article  PubMed  Google Scholar 

  45. Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 13, 390–396 (2019).

    Article  CAS  Google Scholar 

  46. Paulose, J., Meeussen, A. S. & Vitelli, V. Selective buckling via states of self-stress in topological metamaterials. Proc. Natl Acad. Sci. USA 112, 7639–7644 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rafsanjani, A., Akbarzadeh, A. & Pasini, D. Snapping mechanical metamaterials under tension. Adv. Mater. 27, 5931–5935 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Waitukaitis, S., Menaut, R., Chen, B. G. & Hecke, M. V. Origami multistability: from single vertices to metasheets. Phys. Rev. Lett. 114, 055503 (2015).

    Article  PubMed  Google Scholar 

  49. Lim, C. Z. J. et al. Subtyping of circulating exosome-bound amyloid β reflects brain plaque deposition. Nat. Commun. 10, 1144 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lim, C. Z. J., Natalia, A., Sundah, N. R. & Shao, H. Biomarker organization in circulating extracellular vesicles: new applications in detecting neurodegenerative diseases. Adv. Biosyst. 4, e1900309 (2020).

    Article  PubMed  Google Scholar 

  51. Liu, C. et al. Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers. Nat. Biomed. Eng. 3, 183–193 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Liang, K. et al. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 1, 0021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yelleswarapu, V. et al. Mobile platform for rapid sub-picogram-per-milliliter, multiplexed, digital droplet detection of proteins. Proc. Natl Acad. Sci. USA 116, 4489–4495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao, H. et al. Accessible detection of SARS-CoV-2 through molecular nanostructures and automated microfluidics. Biosens. Bioelectron. 194, 113629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, P. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 3, 438–451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Z. et al. Dual-selective magnetic analysis of extracellular vesicle glycans. Matter 2, 150–166 (2020).

    Article  Google Scholar 

  58. Zhao, H. et al. Massive nanophotonic trapping and alignment of rod-shaped bacteria for parallel single-cell studies. Sens. Actuators B 306, 127562 (2020).

    Article  CAS  Google Scholar 

  59. Pan, S. et al. Extracellular vesicle drug occupancy enables real-time monitoring of targeted cancer therapy. Nat. Nanotechnol. 16, 734–742 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Musgrave, C. S. A. & Fang, F. Contact lens materials: a materials science perspective. Materials 12, 261 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Childs, A. et al. Fabricating customized hydrogel contact lens. Sci. Rep. 6, 34905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ayantunde, A. & Parsons, S. Pattern and prognostic factors in patients with malignant ascites: a retrospective study. Ann. Oncol. 18, 945–949 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank X. Qiu, J.W.S. Tan, C.Y.J. Chee and S.C. Teo for assistance with clinical-sample collection. This work was supported in part by funding from the National University of Singapore (NUS), the NUS Research Scholarship, the Ministry of Education, the National Medical Research Council and the Institute for Health Innovation & Technology, and by an IMCB Independent Fellowship and a NUS Early Career Research Award.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., S.P. and H.S. designed the study. C.-A.J.O., M.C.C.T. and J.B.Y.S. provided de-identified clinical samples and health information. H.Z., S.P., X.W. and A.N. performed the research. H.Z., S.P., A.N. and H.S. analyzed the data and wrote the manuscript. All authors contributed to revising the manuscript.

Corresponding author

Correspondence to Huilin Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Giuseppe Strangi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27 and Tables 1–4.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Pan, S., Natalia, A. et al. A hydrogel-based mechanical metamaterial for the interferometric profiling of extracellular vesicles in patient samples. Nat. Biomed. Eng 7, 135–148 (2023). https://doi.org/10.1038/s41551-022-00954-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00954-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research