Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances

Abstract

Engineered human cardiac tissues facilitate progress in regenerative medicine, disease modelling and drug development. In this Perspective, we reflect on the most notable advances in cardiac tissue engineering from the past two decades by analysing pivotal studies and critically examining the most consequential developments. This retrospective analysis led us to identify key milestones and to outline a set of opportunities, along with their associated challenges, for the further advancement of engineered human cardiac tissues.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Unique characteristics of human heart muscle.
Fig. 2: Three areas of focus in cardiac tissue engineering.
Fig. 3: A timeline of progress in the development of hECTs.

References

  1. Fine, B. & Vunjak-Novakovic, G. Shortcomings of animal models and the rise of engineered human cardiac tissue. ACS Biomater. Sci. Eng. 3, 1884–1897 (2017).

    CAS  PubMed  Article  Google Scholar 

  2. Masashi, K. et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126, S29–S37 (2012).

    Google Scholar 

  3. Weinberger, F. et al. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci. Transl. Med. 8, 363ra148 (2016).

    PubMed  Article  CAS  Google Scholar 

  4. Riegler, J. et al. Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ. Res. 117, 720–730 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229 (2011).

    CAS  PubMed  Article  Google Scholar 

  6. Tavakol, D. N., Fleischer, S. & Vunjak-Novakovic, G. Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell 28, 993–1015 (2021).

    CAS  PubMed  Article  Google Scholar 

  7. Braam, S. R. et al. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res. 4, 107–116 (2010).

    CAS  PubMed  Article  Google Scholar 

  8. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  PubMed  Article  Google Scholar 

  9. Itskovitz-Eldor, J. et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6, 88–95 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes. Circulation 107, 2733–2740 (2003).

    CAS  PubMed  Article  Google Scholar 

  12. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Article  Google Scholar 

  13. Zhang, J. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30–e41 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gherghiceanu, M. et al. Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure. J. Cell. Mol. Med. 15, 2539–2551 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Lee, J. H., Protze, S. I., Laksman, Z., Backx, P. H. & Keller, G. M. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21, 179–194.e4 (2017).

    CAS  PubMed  Article  Google Scholar 

  16. Protze, S. I. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68 (2017).

    CAS  PubMed  Article  Google Scholar 

  17. Cyganek, L. et al. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. JCI Insight 3, e99941 (2018).

  18. Zhao, Y. et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913–927.e18 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Lemme, M. et al. Atrial-like engineered heart tissue: an in vitro model of the human atrium. Stem Cell Rep. 11, 1378–1390 (2018).

    CAS  Article  Google Scholar 

  20. Goldfracht, I. et al. Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nat. Commun. 11, 75 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Zhou, P. & Pu, W. T. Recounting cardiac cellular composition. Circ. Res. 118, 368–370 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Tian, Y & Morrisey, E. Importance of myocyte-nonmyocyte interactions in cardiac development and disease. Circ. Res. 110, 1023–1034 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Iyer, D. et al. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development 142, 1528–1541 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bao, X. et al. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nat. Biomed. Eng. 1, 0003 (2016).

  25. Zhang, J. et al. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat. Commun. 10, 2238 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. Zhang, H. et al. Generation of quiescent cardiac fibroblasts from human induced pluripotent stem cells for in vitro modeling of cardiac fibrosis. Circ. Res. 125, 552–566 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Moretti, A. et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165 (2006).

    CAS  PubMed  Article  Google Scholar 

  28. Palpant, N. J. et al. Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. Development 142, 3198–3209 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Giacomelli, E. et al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development 144, 1008–1017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Palpant, N. J. et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat. Protoc. 12, 15–31 (2017).

    CAS  PubMed  Article  Google Scholar 

  31. Passier, R. et al. Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23, 772–780 (2005).

    CAS  PubMed  Article  Google Scholar 

  32. Burridge, P. W. et al. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS ONE 6, e18293 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Freund, C. et al. Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells. Stem Cells 26, 724–733 (2008).

    CAS  PubMed  Article  Google Scholar 

  34. Cao, N. et al. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 22, 219–236 (2012).

    CAS  PubMed  Article  Google Scholar 

  35. Kattman, S. J. et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228–240 (2011).

    CAS  PubMed  Article  Google Scholar 

  36. Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Burridge, P. W. et al. Chemically defined and small molecule-based generation of human cardiomyocytes. Nat. Methods 11, 855–860 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Matsuura, K. et al. Creation of human cardiac cell sheets using pluripotent stem cells. Biochem. Biophys. Res. Commun. 425, 321–327 (2012).

    CAS  PubMed  Article  Google Scholar 

  39. Hamad, S. et al. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics 9, 7222–7238 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Ashok, P., Parikh, A., Du, C. & Tzanakakis, E. S. Xenogeneic-free system for biomanufacturing of cardiomyocyte progeny from human pluripotent stem cells. Front. Bioeng. Biotechnol. 8, 571425 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  41. Buikema, J. W. et al. Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human ipsc-derived cardiomyocytes. Cell Stem Cell 27, 50–63.e5 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Xu, C., Police, S., Rao, N. & Carpenter, M. K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91, 501–508 (2002).

    CAS  PubMed  Article  Google Scholar 

  43. Huber, I. et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J. 21, 2551–2563 (2007).

    CAS  PubMed  Article  Google Scholar 

  44. Anderson, D. et al. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol. Ther. 15, 2027–2036 (2007).

    CAS  PubMed  Article  Google Scholar 

  45. Dubois, N. C. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29, 1011–1018 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137 (2013).

    CAS  PubMed  Article  Google Scholar 

  47. Mannhardt, I. et al. Comparison of 10 control hPSC lines for drug screening in an engineered heart tissue format. Stem Cell Rep. 15, 983–998 (2020).

    CAS  Article  Google Scholar 

  48. He, J.-Q., Ma, Y., Lee, Y., Thomson, J. A. & Kamp, T. J. Human embryonic stem cells develop into multiple types of cardiac myocytes. Circ. Res. 93, 32–39 (2003).

    CAS  PubMed  Article  Google Scholar 

  49. van den Berg, C. W. et al. Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development 142, 3231–3238 (2015).

    PubMed  Google Scholar 

  50. Robertson, C., Tran, D. D. & George, S. C. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31, 829–837 (2013).

    CAS  PubMed  Article  Google Scholar 

  51. Zhang, D. et al. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34, 5813–5820 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Chun, Y. W. et al. Combinatorial polymer matrices enhance in vitro maturation of human induced pluripotent stem cell-derived cardiomyocytes. Biomaterials 67, 52–64 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Tiburcy, M. et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135, 1832–1847 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Majid, Q. A. et al. Natural biomaterials for cardiac tissue engineering: a highly biocompatible solution. Front. Cardiovasc. Med. 7, 554597 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Branco, M. A. et al. Transcriptomic analysis of 3D cardiac differentiation of human induced pluripotent stem cells reveals faster cardiomyocyte maturation compared to 2D culture. Sci. Rep. 9, 9229 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. Chen, F.-M. & Liu, X. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 53, 86–168 (2016).

    CAS  PubMed  Article  Google Scholar 

  57. Kharaziha, M. et al. PGS:gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 34, 6355–6366 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Wu, Y., Wang, L., Guo, B. & Ma, P. X. Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano 11, 5646–5659 (2017).

    CAS  PubMed  Article  Google Scholar 

  59. Ashtari, K. et al. Electrically conductive nanomaterials for cardiac tissue engineering. Adv. Drug Deliv. Rev. 144, 162–179 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Zhao, Y. et al. Engineering microenvironment for human cardiac tissue assembly in heart-on-a-chip platform. Matrix Biol. 85–86, 189–204 (2020).

    PubMed  Article  CAS  Google Scholar 

  61. Breckwoldt, K. et al. Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat. Protoc. 12, 1177–1197 (2017).

    CAS  PubMed  Article  Google Scholar 

  62. Ronaldson-Bouchard, K. et al. Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype. Nat. Protoc. 14, 2781–2817 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Schwach, V. & Passier, R. Native cardiac environment and its impact on engineering cardiac tissue. Biomater. Sci. 7, 3566–3580 (2019).

    CAS  PubMed  Article  Google Scholar 

  64. Fong, A. H. et al. Three-dimensional adult cardiac extracellular matrix promotes maturation of human induced pluripotent stem cell-derived cardiomyocytes. Tissue Eng. Part A 22, 1016–1025 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Rai, R. et al. Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 3677–3687 (2013).

    CAS  PubMed  Article  Google Scholar 

  66. Park, H., Radisic, M., Lim, J. O., Chang, B. H. & Vunjak-Novakovic, G. A novel composite scaffold for cardiac tissue engineering. In Vitro Cell. Dev. Biol. Anim. 41, 188–196 (2005).

    CAS  PubMed  Article  Google Scholar 

  67. Xu, G. et al. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)–poly(ethylene glycol)–oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater. 15, 55–64 (2015).

    CAS  PubMed  Article  Google Scholar 

  68. Ketabat, F., Karkhaneh, A., Mehdinavaz Aghdam, R. & Hossein Ahmadi Tafti, S. Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications. J. Biomater. Sci. Polym. Ed. 28, 794–805 (2017).

    CAS  PubMed  Article  Google Scholar 

  69. Roshanbinfar, K. et al. Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues. Adv. Funct. Mater. 28, 1803951 (2018).

    Article  CAS  Google Scholar 

  70. Sengupta, D. & Heilshorn, S. C. Protein-engineered biomaterials: highly tunable tissue engineering scaffolds. Tissue Eng. Part B Rev. 16, 285–293 (2010).

    CAS  PubMed  Article  Google Scholar 

  71. Farajollahi, M. M., Hamzehlou, S., Mehdipour, A. & Samadikuchaksaraei, A. Recombinant proteins: hopes for tissue engineering. BioImpacts 2, 123–125 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Esser, T. U., Trossmann, V. T., Lentz, S., Engel, F. B. & Scheibel, T. Designing of spider silk proteins for human induced pluripotent stem cell-based cardiac tissue engineering. Mater. Today Bio. 11, 100114 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Stoppel, W. L. et al. Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response. J. Biomed. Mater. Res. A 104, 3058–3072 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Hasturk, O., Jordan, K. E., Choi, J. & Kaplan, D. L. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials 232, 119720 (2020).

    CAS  PubMed  Article  Google Scholar 

  75. Yildirim, Y. et al. Development of a biological ventricular assist device. Circulation 116, I-16–I-23 (2007).

    Article  Google Scholar 

  76. Arai, K. et al. Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer. PLoS ONE 13, e0209162 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Tsuruyama, S., Matsuura, K., Sakaguchi, K. & Shimizu, T. Pulsatile tubular cardiac tissues fabricated by wrapping human iPS cells-derived cardiomyocyte sheets. Regen. Ther. 11, 297–305 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  78. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    CAS  PubMed  Article  Google Scholar 

  79. Noor, N. et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6, 1900344 (2019).

    Article  CAS  Google Scholar 

  80. Ivey, M. J. & Tallquist, M. D. Defining the cardiac fibroblast: a new hope. Circ. J. 80, 2269–2276 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Camelliti, P., Borg, T. K. & Kohl, P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65, 40–51 (2005).

    CAS  PubMed  Article  Google Scholar 

  82. Talman, V. & Kivelä, R. Cardiomyocyte–endothelial cell interactions in cardiac remodeling and regeneration. Front. Cardiovasc. Med. 5, 101 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. Colliva, A., Braga, L., Giacca, M. & Zacchigna, S. Endothelial cell–cardiomyocyte crosstalk in heart development and disease. J. Physiol. 598, 2923–2939 (2020).

    CAS  PubMed  Article  Google Scholar 

  84. Caspi, O. et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100, 263–272 (2007).

    CAS  PubMed  Article  Google Scholar 

  85. Tulloch, N. L. et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109, 47–59 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Nunes, S. S. et al. Biowire: a platform for maturation of human pluripotent stem cell–derived cardiomyocytes. Nat. Methods 10, 781–787 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Ronaldson-Bouchard, K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Giacomelli, E. et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3d cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell 26, 862–879.e11 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Masumoto, H. et al. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Sci. Rep. 6, 29933 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Campostrini, G. et al. Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells. Nat. Protoc. 16, 2213–2256 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Kamakura, T. et al. Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ. J. 77, 1307–1314 (2013).

    CAS  PubMed  Article  Google Scholar 

  92. Lundy, S. D., Zhu, W.-Z., Regnier, M. & Laflamme, M. A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem. Cells Dev. 22, 1991–2002 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Mihic, A. et al. The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials 35, 2798–2808 (2014).

    CAS  PubMed  Article  Google Scholar 

  94. Shadrin, I. Y. et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 8, 1825 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. Leonard, A. et al. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J. Mol. Cell. Cardiol. 118, 147–158 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Yang, X. et al. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J. Mol. Cell. Cardiol. 72, 296–304 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Parikh, S. S. et al. Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 121, 1323–1330 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Lin, B. et al. Culture in glucose-depleted medium supplemented with fatty acid and 3,3’,5-triiodo-l-thyronine facilitates purification and maturation of human pluripotent stem cell-derived cardiomyocytes. Front. Endocrinol. 8, 253 (2017).

    Article  Google Scholar 

  99. Yang, X. et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Rep. 13, 657–668 (2019).

    CAS  Article  Google Scholar 

  100. Horikoshi, Y. et al. Fatty acid-treated induced pluripotent stem cell-derived human cardiomyocytes exhibit adult cardiomyocyte-like energy metabolism phenotypes. Cells 8, 1095 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  101. Correia, C. et al. Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci. Rep. 7, 8590 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. Feyen, D. A. M. et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep. 32, 107925 (2020).

    CAS  PubMed  Article  Google Scholar 

  103. Chong, J. J. H. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Komae, H. et al. Three-dimensional functional human myocardial tissues fabricated from induced pluripotent stem cells. J. Tissue Eng. Regen. Med. 11, 926–935 (2017).

    CAS  PubMed  Article  Google Scholar 

  105. Seta, H., Matsuura, K., Sekine, H., Yamazaki, K. & Shimizu, T. Tubular cardiac tissues derived from human induced pluripotent stem cells generate pulse pressure in vivo. Sci. Rep. 7, 45499 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Goldsmith, E. C. et al. Organization of fibroblasts in the heart. Dev. Dyn. 230, 787–794 (2004).

    CAS  PubMed  Article  Google Scholar 

  107. Rossi, G. et al. Capturing cardiogenesis in gastruloids. Cell Stem Cell 28, 230–240.e6 (2021).

    CAS  PubMed  Article  Google Scholar 

  108. Drakhlis, L. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat. Biotechnol. 39, 737–746 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Hofbauer, P. et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell 184, 3299–3317.e22 (2021).

    CAS  PubMed  Article  Google Scholar 

  110. Lee, B. W. et al. Modular assembly approach to engineer geometrically precise cardiovascular tissue. Adv. Healthc. Mater. 5, 900–906 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Zhang, B. et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater. 15, 669–678 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. Lai, B. F. L. et al. InVADE: integrated vasculature for assessing dynamic events. Adv. Funct. Mater. 27, 1703524 (2017).

    Article  CAS  Google Scholar 

  113. Zhang, Y. S. et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45–59 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. Ruskowitz, E. R. & DeForest, C. A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater. 3, 17087 (2018).

    CAS  Article  Google Scholar 

  116. Brown, T. E. & Anseth, K. S. Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem. Soc. Rev. 46, 6532–6552 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. Shadish, J. A., Benuska, G. M. & DeForest, C. A. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18, 1005–1014 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. Hinson, J. T. et al. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349, 982–986 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Mosqueira, D. et al. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur. Heart J. 39, 3879–3892 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. Mandegar, M. A. et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18, 541–553 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  PubMed  Article  Google Scholar 

  124. Dwenger, M. et al. Chronic optical pacing conditioning of h-iPSC engineered cardiac tissues. J. Tissue Eng. 10, 2041731419841748 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  125. Dempsey, G. T. et al. Cardiotoxicity screening with simultaneous optogenetic pacing, voltage imaging and calcium imaging. J. Pharmacol. Toxicol. Methods 81, 240–250 (2016).

    CAS  PubMed  Article  Google Scholar 

  126. Klimas, A. et al. OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology. Nat. Commun. 7, 11542 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. Lemme, M. et al. Chronic intermittent tachypacing by an optogenetic approach induces arrhythmia vulnerability in human engineered heart tissue. Cardiovasc. Res. 116, 1487–1499 (2020).

    CAS  PubMed  Article  Google Scholar 

  128. Kwon, E. & Heo, W. D. Optogenetic tools for dissecting complex intracellular signaling pathways. Biochem. Biophys. Res. Commun. 527, 331–336 (2020).

    CAS  PubMed  Article  Google Scholar 

  129. Park, H. et al. Optogenetic protein clustering through fluorescent protein tagging and extension of CRY2. Nat. Commun. 8, 30 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  130. Kim, N. Y. et al. Optogenetic control of mRNA localization and translation in live cells. Nat. Cell Biol. 22, 341–352 (2020).

    CAS  PubMed  Article  Google Scholar 

  131. Ma, G. et al. Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling. Nat. Commun. 11, 1039 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. Wearn, J. T., Technical Assistance of Zschiesche L. J. The extent of the capillary bed of the heart. J. Exp. Med. 47, 273–290 (1928).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. Gordan, R., Gwathmey, J. K. & Xie, L.-H. Autonomic and endocrine control of cardiovascular function. World J. Cardiol. 7, 204–214 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  134. Oh, Y. et al. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell 19, 95–106 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. Winbo, A. et al. Functional coculture of sympathetic neurons and cardiomyocytes derived from human-induced pluripotent stem cells. Am. J. Physiol. Heart Circ. Physiol. 319, H927–H937 (2020).

    CAS  PubMed  Article  Google Scholar 

  136. Takayama, Y. et al. Selective induction of human autonomic neurons enables precise control of cardiomyocyte beating. Sci. Rep. 10, 9464 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. Dollinger, C. et al. Incorporation of resident macrophages in engineered tissues: multiple cell type response to microenvironment controlled macrophage-laden gelatine hydrogels. J. Tissue Eng. Regen. Med. 12, 330–340 (2018).

    CAS  PubMed  Article  Google Scholar 

  138. Lyadova, I., Gerasimova, T. & Nenasheva, T. Macrophages derived from human induced pluripotent stem cells: the diversity of protocols, future prospects, and outstanding questions. Front. Cell Dev. Biol. 9, 924 (2021).

    Article  Google Scholar 

  139. Mills, R. J. et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell 24, 895–907.e6 (2019).

    CAS  PubMed  Article  Google Scholar 

  140. Richards, D. J. et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat. Biomed. Eng. 4, 446–462 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. Rhee, J.-W. et al. Modeling secondary iron overload cardiomyopathy with human induced pluripotent stem cell-derived cardiomyocytes. Cell Rep. 32, 107886 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. Zhang, B. et al. Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature. Nat. Protoc. 13, 1793–1813 (2018).

    CAS  PubMed  Article  Google Scholar 

  143. Help Therapeutics. Epicardial Injection of Allogeneic Human Pluripotent Stem Cell-derived Cardiomyocytes to Treat Severe Chronic Heart Failure https://clinicaltrials.gov/ct2/show/NCT03763136 (2021).

  144. Gavenis, K. Safety and Efficacy of Induced Pluripotent Stem Cell-derived Engineered Human Myocardium as Biological Ventricular Assist Tissue in Terminal Heart Failure https://clinicaltrials.gov/ct2/show/NCT04396899 (2021).

  145. Huebsch, N. et al. Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Eng. Part C Methods 21, 467–479 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. Sharma, A., Toepfer, C. N., Schmid, M., Garfinkel, A. C. & Seidman, C. E. Differentiation and contractile analysis of GFP-sarcomere reporter hiPSC-cardiomyocytes. Curr. Protoc. Hum. Genet. 96, 21.12.1–21.12.12 (2018).

    CAS  Google Scholar 

  147. Toepfer, C. N. et al. SarcTrack. Circ. Res. 124, 1172–1183 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. Psaras, Y. et al. CalTrack: high-throughput automated calcium transient analysis in cardiomyocytes. Circ. Res. 129, 326–341 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. Bock, C., Farlik, M. & Sheffield, N. C. Multi-omics of single cells: strategies and applications. Trends Biotechnol. 34, 605–608 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19, 286–302 (2018).

    CAS  PubMed  Article  Google Scholar 

  151. Bai, D., Peng, J. & Yi, C. Advances in single-cell multi-omics profiling. RSC Chem. Biol. 2, 441–449 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647–1660.e19 (2019).

    CAS  PubMed  Article  Google Scholar 

  153. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  154. Yechikov, S. et al. NODAL inhibition promotes differentiation of pacemaker-like cardiomyocytes from human induced pluripotent stem cells. Stem Cell Res. 49, 102043 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. Devalla, H. D. et al. Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol. Med. 7, 394–410 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. Guadix, J. A. et al. Human pluripotent stem cell differentiation into functional epicardial progenitor cells. Stem Cell Rep. 9, 1754–1764 (2017).

    CAS  Article  Google Scholar 

  157. Yao, S. et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc. Natl Acad. Sci. USA 103, 6907–6912 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. Takei, S. et al. Bone morphogenetic protein-4 promotes induction of cardiomyocytes from human embryonic stem cells in serum-based embryoid body development. Am. J. Physiol. Heart Circ. Physiol. 296, H1793–H1803 (2009).

    CAS  PubMed  Article  Google Scholar 

  159. Li, J. et al. Human pluripotent stem cell-derived cardiac tissue-like constructs for repairing the infarcted myocardium. Stem Cell Rep. 9, 1546–1559 (2017).

    CAS  Article  Google Scholar 

  160. Han, J., Wu, Q., Xia, Y., Wagner, M. B. & Xu, C. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res. 16, 740–750 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. Kaiser, N. J., Kant, R. J., Minor, A. J. & Coulombe, K. L. K. Optimizing blended collagen-fibrin hydrogels for cardiac tissue engineering with human iPSC-derived cardiomyocytes. ACS Biomater. Sci. Eng. 5, 887–899 (2019).

    CAS  PubMed  Article  Google Scholar 

  162. Rogers, A. J., Fast, V. G. & Sethu, P. Biomimetic cardiac tissue model enables the adaption of human induced pluripotent stem cell cardiomyocytes to physiological hemodynamic loads. Anal. Chem. 88, 9862–9868 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. Ruan, J.-L. et al. Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells 33, 2148–2157 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. Ulmer, B. M. et al. Contractile work contributes to maturation of energy metabolism in hiPSC-derived cardiomyocytes. Stem Cell Rep. 10, 834–847 (2018).

    CAS  Article  Google Scholar 

  165. Ruan, J.-L. et al. Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation 134, 1557–1567 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. Marchianò, S., Bertero, A. & Murry, C. E. Learn from your elders: developmental biology lessons to guide maturation of stem cell-derived cardiomyocytes. Pediatr. Cardiol. 40, 1367–1387 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  167. Wiegerinck, R. F. et al. Force frequency relationship of the human ventricle increases during early postnatal development. Pediatr. Res. 65, 414–419 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  168. Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence. Circ. Res. 114, 511–523 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. Feric, N. T. & Radisic, M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110–134 (2016).

    CAS  PubMed  Article  Google Scholar 

  170. Lopaschuk, G. D. & Jaswal, J. S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal. J. Cardiovasc. Pharmacol. 56, 130–140 (2010).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding support for our cardiac research by NIH (grants UH3EB025765, P41EB027062, HL076485, F30HL145921), NSF (grant ERC 1647837) and NASA (NNX16AO69A). All figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

R.Z.Z., R.L., B.L. and G.V.-N. conceptualized, outlined and edited the manuscript. R.Z.Z., R.L. and B.L. surveyed relevant literature and wrote the manuscript.

Corresponding author

Correspondence to Gordana Vunjak-Novakovic.

Ethics declarations

Competing interests

G.V.-N. co-founded TARA Biosystems, a company that has licensed some of the cardiac tissue-engineering methodologies developed in her laboratory, holds equity in the company and is serving on the Board of Directors. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Wolfram Zimmermann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuang, R.Z., Lock, R., Liu, B. et al. Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nat. Biomed. Eng 6, 327–338 (2022). https://doi.org/10.1038/s41551-022-00885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00885-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing