Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reprogramming of fibroblasts into expandable cardiovascular progenitor cells via small molecules in xeno-free conditions

Abstract

A major hurdle in cardiac cell therapy is the lack of a bona fide autologous stem-cell type that can be expanded long-term and has authentic cardiovascular differentiation potential. Here we report that a proliferative cell population with robust cardiovascular differentiation potential can be generated from mouse or human fibroblasts via a combination of six small molecules. These chemically induced cardiovascular progenitor cells (ciCPCs) self-renew long-term in fully chemically defined and xeno-free conditions, with faithful preservation of the CPC phenotype and of cardiovascular differentiation capacity in vitro and in vivo. Transplantation of ciCPCs into infarcted mouse hearts improved animal survival and cardiac function up to 13 weeks post-infarction. Mechanistically, activated fibroblasts revert to a plastic state permissive to cardiogenic signals, enabling their reprogramming into ciCPCs. Expanded autologous cardiovascular cells may find uses in drug discovery, disease modelling and cardiac cell therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reprogramming of MEFs into ciCPCs by small molecules.
Fig. 2: ciCPCs are long-term expandable in fully chemically defined xeno-free conditions.
Fig. 3: ciCPCs exhibit a transcriptional programme similar to developing CPCs.
Fig. 4: Long-term expanded ciCPCs robustly differentiate into CMs, SMCs and ECs in vitro.
Fig. 5: Expanded ciCPCs convert into CMs, SMCs and ECs in injured mouse hearts and improve cardiac function after MI.
Fig. 6: Mechanisms underlying 6C-induced CPC reprogramming.
Fig. 7: Reprogramming of HFFs into hciCPCs by 6C.
Fig. 8: Expanded hciCPCs exhibit robust cardiovascular potency both in vitro and in vivo.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Source data for the figures are provided with this paper. The RNA-sequencing data are available from the NCBI GEO database, via the accession number GSE159081. Source data are provided with this paper.

References

  1. Laugwitz, K. L. et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647–653 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Berlo, J. H. et al. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509, 337–341 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Vagnozzi, R. J. et al. Genetic lineage tracing of Sca-1(+) cells reveals endothelial but not myogenic contribution to the murine heart. Circulation 138, 2931–2939 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neidig, L. E. et al. Evidence for minimal cardiogenic potential of stem cell antigen 1-positive cells in the adult mouse heart. Circulation 138, 2960–2962 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chien, K. R. et al. Regenerating the field of cardiovascular cell therapy. Nat. Biotechnol. 37, 232–237 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Li, Y. et al. Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138, 793–805 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Vagnozzi, R. J. et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 577, 405–409 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y. et al. Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell 18, 368–381 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lalit, P. A. et al. Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors. Cell Stem Cell 18, 354–367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, X., Xu, J. & Deng, H. K. Small molecule-induced cellular fate reprogramming: promising road leading to Rome. Curr. Opin. Genet. Dev. 52, 29–35 (2018).

    Article  PubMed  CAS  Google Scholar 

  11. De, D., Halder, D., Shin, I. & Kim, K. K. Small molecule-induced cellular conversion. Chem. Soc. Rev. 46, 6241–6254 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Cao, N. et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352, 1216–1220 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, M. L. et al. Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell 18, 653–667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao, S. T. et al. Chemical reprogramming of mouse embryonic and adult fibroblast into endoderm lineage. J. Biol. Chem. 292, 19122–19132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, G. et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424–429 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bao, X. et al. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nat. Biomed. Eng. 1, 0003 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Yasuda, S. Y. et al. Chemically defined and growth-factor-free culture system for the expansion and derivation of human pluripotent stem cells. Nat. Biomed. Eng. 2, 173–182 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Wamstad, J. A. et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151, 206–220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K. & Bruneau, B. G. Early patterning and specification of cardiac progenitors in gastrulating mesoderm. Elife 3, e03848 (2014).

    Article  PubMed Central  Google Scholar 

  21. Moretti, A. et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Johnston, P. V. et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120, 1075–1083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Terrovitis, J. V., Smith, R. R. & Marban, E. Assessment and optimization of cell engraftment after transplantation into the heart. Circ. Res. 106, 479–494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lutgens, E. et al. Chronic myocardial infarction in the mouse: cardiac structural and functional changes. Cardiovasc Res 41, 586–593 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Li, R. H. et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, Y. et al. A XEN-like state bridges somatic cells to pluripotency during chemical reprogramming. Cell 163, 1678–1691 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Han, X. et al. A molecular roadmap for induced multi-lineage trans-differentiation of fibroblasts by chemical combinations. Cell Res. 27, 386–401 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Balasubramanyam, K., Swaminathan, V., Ranganathan, A. & Kundu, T. K. Small molecule modulators of histone acetyltransferase p300. J. Biol. Chem. 278, 19134–19140 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Gaspar-Maia, A., Alajem, A., Meshorer, E. & Ramalho-Santos, M. Open chromatin in pluripotency and reprogramming. Nat. Rev. Mol. Cell Biol. 12, 36–47 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, Y. et al. Bmi1 is a key epigenetic barrier to direct cardiac reprogramming. Cell Stem Cell 18, 382–395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo, S. et al. Nonstochastic reprogramming from a privileged somatic cell state. Cell 156, 649–662 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, Y. F. et al. Conversion of human gastric epithelial cells to multipotent endodermal progenitors using defined small molecules. Cell Stem Cell 19, 449–461 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, B. et al. D609 protects retinal pigmented epithelium as a potential therapy for age-related macular degeneration. Signal Transduct. Target Ther. 5, 20 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kattman, S. J. et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Blin, G. et al. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J. Clin. Invest. 120, 1125–1139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Onder, T. T. et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483, 598–602 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, X. et al. Direct reprogramming of fibroblasts via a chemically induced XEN-like state. Cell Stem Cell 21, 264–273.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Kunath, T. et al. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132, 1649–1661 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Moerkamp, A. T. et al. Extraembryonic endoderm cells as a model of endoderm development. Dev. Growth Differ. 55, 301–308 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Birket, M. J. et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat. Biotechnol. 33, 970–979 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, I. Y. & Wu, J. C. Finding expandable induced cardiovascular progenitor cells. Circ. Res. 119, 16–20 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Masuda, S. et al. Expandable progenitors from induced pluripotent stem cells. Nat. Rev. Cardiol. 13, 574 (2016).

    Article  PubMed  Google Scholar 

  45. Yamakawa, H. & Fukuda, K. Comment on: expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Stem Cell Investig. 3, 89 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kannappan, R. et al. Functionally competent DNA damage-free induced pluripotent stem cell-derived cardiomyocytes for myocardial repair. Circulation 140, 520–522 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gao, L. et al. Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137, 1712–1730 (2018).

    Article  PubMed  Google Scholar 

  48. Zhu, K. et al. Lack of remuscularization following transplantation of human embryonic stem cell-derived cardiovascular progenitor cells in infarcted nonhuman primates. Circ. Res. 122, 958–969 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Zhu, W., Zhao, M., Mattapally, S., Chen, S. & Zhang, J. CCND2 overexpression enhances the regenerative potency of human induced pluripotent stem cell-derived cardiomyocytes: remuscularization of injured ventricle. Circ. Res. 122, 88–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, H. et al. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, oct4. Cell Rep. 6, 951–960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin, Y. et al. Heparin promotes cardiac differentiation of human pluripotent stem cells in chemically defined albumin-free medium, enabling consistent manufacture of cardiomyocytes. Stem Cells Transl. Med. 6, 527–538 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Cao, N. et al. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 23, 1119–1132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 7, 1338 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Zhou (University of North Carolina) for technical support and all lab members for helpful discussion. N.C. was funded by the National Key R&D Program of China (2018YFA0109100 and 2018YFA050830), the National Natural Science Foundation of China (92057113, 82061148011 and 31771508), and the Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06S029). J.W. was funded by the National Key R&D Program of China (2018YFA0109600) and the National Natural Science Foundation of China (81700233). Z.Z. was funded by the National Key R&D Program of China (2019YFA0111500).

Author information

Authors and Affiliations

Authors

Contributions

J.W., S.G. and N.C. conceived the project, carried out the experiments and wrote the manuscript. Zihao Chen, W.C. and T.X. performed bioinformatics analysis. F.L., H.X., Z.L., L.W., Zhongyan Chen, D.C., X.C., F.Z., Z.Z. and M.Z. performed data analysis, provided materials or assisted with the experiments.

Corresponding author

Correspondence to Nan Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Ke Cheng, Timothy Kamp and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Main Supplementary Information

Supplementary figures, tables and video captions.

Reporting Summary

Supplementary Video 1

Beating cluster generated after MEF-derived ciCPCs were cultured in cardiac differentiation conditions for 7 d.

Supplementary Video 2

Beating cluster generated after TTF-derived ciCPCs were cultured in cardiac differentiation conditions for 7 d.

Supplementary Video 3

Beating cluster generated after HFF-derived ciCPCs were cultured in cardiac differentiation conditions for 14 d.

Source data

SD for Fig. 1

Source data.

SD for Fig. 2

Source data.

SD for Fig. 4

Source data.

SD for Fig. 5

Source data.

SD for Fig. 6

Source data.

SD for Fig. 7

Source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Gu, S., Liu, F. et al. Reprogramming of fibroblasts into expandable cardiovascular progenitor cells via small molecules in xeno-free conditions. Nat. Biomed. Eng 6, 403–420 (2022). https://doi.org/10.1038/s41551-022-00865-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00865-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing