Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diagnostic assessment of glaucoma and non-glaucomatous optic neuropathies via optical texture analysis of the retinal nerve fibre layer

Abstract

The clinical diagnostic evaluation of optic neuropathies relies on the analysis of the thickness of the retinal nerve fibre layer (RNFL) by optical coherence tomography (OCT). However, false positives and false negatives in the detection of RNFL abnormalities are common. Here we show that an algorithm integrating measurements of RNFL thickness and reflectance from standard wide-field OCT scans can be used to uncover the trajectories and optical texture of individual axonal fibre bundles in the retina and to discern distinctive patterns of loss of axonal fibre bundles in glaucoma, compressive optic neuropathy, optic neuritis and non-arteritic anterior ischaemic optic neuropathy. Such optical texture analysis can detect focal RNFL defects in early optic neuropathy, as well as residual axonal fibre bundles in end-stage optic neuropathy that were indiscernible by conventional OCT analysis and by red-free RNFL photography. In a diagnostic-performance study, optical texture analysis of the RNFL outperformed conventional OCT in the detection of glaucoma, as defined by visual-field testing or red-free photography. Our findings show that optical texture analysis of the RNFL for the detection of optic neuropathies is highly sensitive and specific.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Algorithm for ROTA.
Fig. 2: ROTA discerns the patterns and the extent of RNFL defects in eyes with different severity of optic nerve damage.
Fig. 3: ROTA detects focal RNFL defects missed by conventional OCT analysis.
Fig. 4: ROTA discerns the patterns and severity of axonal fibre bundle loss at the macula.
Fig. 5: ROTA reveals distinctive patterns of RNFL defects in non-glaucomatous optic neuropathies.
Fig. 6: ROTA uncovers axonal fibre bundle edema in idiopathic intracranial hypertension and RNFL defects in eyes with optic disc drusen.
Fig. 7: Comparison of diagnostic performance between ROTA and OCT pRNFLT/mGCIPLT analysis for detection of early glaucoma and glaucoma.
Fig. 8: High resolution ROTA.

Similar content being viewed by others

Data availability

All patient data are available from the corresponding author on reasonable request, subject to approval from the Institutional Review Board of Hong Kong Hospital Authority research ethics committees. The Cirrus OCT normative data have been described22.

Code availability

Conventional texture-based image analyses were performed using MATLAB R2018a. The texture features required for GLCM texture analysis were extracted using functions from Statistics and Machine Learning Toolbox (MATLAB R2018a), Image Processing Toolbox (MATLAB R2018a) and code (GLCMFeatures ver. 2.1.1.0 by Patrik Brynolfsso 2016, publicly available from https://www.mathworks.com/matlabcentral/fileexchange/55034-glcmfeatures-glcm). The texture feature required for wavelet texture analysis was extracted using functions from Image Processing Toolbox (MATLAB R2018a). ROTA images were generated using a custom code developed in MATLAB R2018a. The code is available from the corresponding author on reasonable request. Statistical analysis was performed with STATA (ver. 15) and R (ver. 3.4.4).

References

  1. Sommer, A. et al. Evaluation of nerve fiber layer assessment. Arch. Ophthalmol. 102, 1766–1771 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. O’Neill, E. C. et al. The optic nerve head in acquired optic neuropathies. Nat. Rev. Neurol. 6, 221–236 (2010).

    Article  PubMed  Google Scholar 

  3. Weinreb, R. N. et al. Primary open-angle glaucoma. Nat. Rev. Dis. Primers 2, 16067 (2016).

    Article  PubMed  Google Scholar 

  4. Hood, D. C. Improving our understanding, and detection, of glaucomatous damage: an approach based upon optical coherence tomography (OCT). Prog. Retin. Eye Res. 57, 46–75 (2017).

    Article  PubMed  Google Scholar 

  5. Micieli, J. A., Newman, N. J. & Biousse, V. The role of optical coherence tomography in the evaluation of compressive optic neuropathies. Curr. Opin. Neurol. 32, 115–123 (2019).

    Article  PubMed  Google Scholar 

  6. Mutlu, U. et al. Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study. JAMA Neurol. 75, 1256–1263 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Petzold, A. et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 16, 797–812 (2017).

    Article  PubMed  Google Scholar 

  8. Ahn, J. et al. Retinal thinning associates with nigral dopaminergic loss in de novo Parkinson disease. Neurology 91, e1003–e1012 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Andrade, C. et al. Spectral-domain optical coherence tomography as a potential biomarker in Huntington’s disease. Mov. Disord. 31, 377–383 (2016).

    Article  PubMed  Google Scholar 

  10. Doustar, J., Torbati, T., Black, K. L., Koronyo, Y. & Koronyo-Hamaoui, M. Optical coherence tomography in Alzheimer’s disease and other neurodegenerative diseases. Front. Neurol. 8, 701 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Leung, C. K. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 116, 1257–1263 (2009).

    Article  PubMed  Google Scholar 

  12. Mwanza, J. C. et al. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest. Ophthalmol. Vis. Sci. 52, 8323–8329 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Oddone, F. et al. Macular versus retinal nerve fiber layer parameters for diagnosing manifest glaucoma: a systematic review of diagnostic accuracy studies. Ophthalmology 123, 939–949 (2016).

    Article  PubMed  Google Scholar 

  14. Leung, C. K. & Lam, A. K. Optical texture analysis of the inner retina. US patent 62/571,559 (2017).

  15. Flaxman, S. R. et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob. Health 5, e1221–e1234 (2017).

    Article  PubMed  Google Scholar 

  16. Cohen, J. F. et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 6, e012799 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pons, M. E. et al. Assessment of retinal nerve fiber layer internal reflectivity in eyes with and without glaucoma using optical coherence tomography. Arch. Ophthalmol. 118, 1044–1047 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Vermeer, K. A., van der Schoot, J., Lemij, H. G. & de Boer, J. F. RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment. Invest. Ophthalmol. Vis. Sci. 53, 6102–6108 (2012).

    Article  PubMed  Google Scholar 

  19. Greenfield, D. S. Glaucomatous versus nonglaucomatous optic disc cupping: clinical differentiation. Semin. Ophthalmol. 14, 95–108 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Mcleod, D. Pathogenesis of optic disc swelling. Br. J. Ophthalmol. 62, 579–580 (1978).

    Article  Google Scholar 

  21. Biswas, S., Lin, C. & Leung, C. K. Evaluation of a myopic normative database for analysis of retinal nerve fiber layer thickness. JAMA Ophthalmol. 134, 1032–1039 (2016).

    Article  PubMed  Google Scholar 

  22. Knight, O. J. et al. Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT. Arch. Ophthalmol. 130, 312–318 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hood, D. C. et al. Details of glaucomatous damage are better seen on OCT en face images than on OCT retinal nerve fiber layer thickness maps. Invest. Ophthalmol. Vis. Sci. 56, 6208–6216 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chauhan, B. C., Sharpe, G. P. & Hutchison, D. M. Imaging of the temporal raphe with optical coherence tomography. Ophthalmology 121, 2287–2288 (2014).

    Article  PubMed  Google Scholar 

  25. Dong, Z. M., Wollstein, G., Wang, B. & Schuman, J. S. Adaptive optics optical coherence tomography in glaucoma. Prog. Retin. Eye Res. 57, 76–88 (2017).

    Article  PubMed  Google Scholar 

  26. Hood, D. C. et al. Confocal adaptive optics imaging of peripapillary nerve fiber bundles: implications for glaucomatous damage seen on circumpapillary OCT scans. Transl. Vis. Sci. Technol. 4, 12 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bae, H. W. et al. Comparison of three types of images for the detection of retinal nerve fiber layer defects. Optom. Vis. Sci. 92, 500–505 (2015).

    Article  PubMed  Google Scholar 

  28. Neelam, K., Cheung, C. M., Ohno-Matsui, K., Lai, T. Y. & Wong, T. Y. Choroidal neovascularization in pathological myopia. Prog. Retin. Eye Res. 31, 495–525 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. CCRB Clinical Trials Registry, CUHK_CCRB00439. Progressive Lamina Cribrosa Deformation – A Biomarker for Fast Progressors in Glaucoma (The Chinese University of Hong Kong, 2014); https://www2.ccrb.cuhk.edu.hk/registry/public/278

  30. CCRB Clinical Trials Registry, CUHK_CCRB00591. Measurement of the Rates of Retinal Nerve Fiber Layer Thinning to Guide Management of Glaucoma Patients (The Chinese University of Hong Kong, 2014); https://www2.ccrb.cuhk.edu.hk/registry/public/457

  31. ANZCTR, ACTRN12618000453280. Progressive Retinal Nerve Fiber Layer (RNFL) Thinning as a Biomarker to Guide Intraocular Pressure (IOP) Lowering Treatment in Ocular Hypertensives (OHT). (ANZCTR, 2018); https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373418

  32. Leung, C.K. in Diagnosis of Primary Open Angle Glaucoma (eds Weinreb, R. N., Leung, C. K., Garway-Heath, D. F., Medeiros, F. A. & Liebmann, J.) 1–20 (WGA Consensus Series 10, Kugler, 2016).

  33. Leung, C. K. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 117, 1684–1691 (2010).

    Article  PubMed  Google Scholar 

  34. Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3, 610–621 (1973).

    Article  Google Scholar 

  35. Bovik, A. C., Clark, M. & Geisler, W. S. Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Anal. Mach. Intell. 12, 55–73 (1990).

    Article  Google Scholar 

  36. Anitha, J. & Peter, J. D. A wavelet based morphological mass detection and classification in mammograms. In International Conference on Machine Vision and Image Processing (MVIP) 25–28 (2012).

  37. Ben Salem, Y. & Nasri, S. Automatic recognition of woven fabrics based on texture and using SVM. Signal Image Video Process. 4, 429–434 (2010).

    Article  Google Scholar 

  38. Kandaswamy, U., Adjeroh, D. A. & Lee, M. C. Efficient texture analysis of SAR imagery. IEEE Trans. Geosci. Remote Sens. 43, 2075–2083 (2005).

    Article  Google Scholar 

  39. Bharati, M. H., Liu, J. J. & MacGregor, J. F. Image texture analysis: methods and comparisons. Chemometr. Intell. Lab. Syst. 72, 57–71 (2004).

    Article  CAS  Google Scholar 

  40. Youden, W. J. Index for rating diagnostic tests. Cancer 3, 32–35 (1950).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, Z., Sun, X. & Hardin, J. W. A note on the tests for clustered matched-pair binary data. Biom. J. 52, 638–652 (2010).

    Article  PubMed  Google Scholar 

  42. Obuchowski, N. A. On the comparison of correlated proportions for clustered data. Stat. Med. 17, 1495–1507 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Pepe, M. S. Three approaches to regression analysis of receiver operating characteristic curves for continuous test results. Biometrics 54, 124–135 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hong Kong Research Grants Council General Research Fund 14101518, 14101117, 14100916 and 14101215.

Author information

Authors and Affiliations

Authors

Contributions

C.K.S.L. conceptualized and designed the study; C.K.S.L. and A.K.N.L. developed the algorithm of ROTA; K.H.N.W., M.W., C.Y.L.C., C.K.M.C., N.C.Y.C., K.W.K. and C.K.S.L. recruited study participants; C.K.S.L., M.Y., A.K.N.L. and P.Y.G. performed data analysis; C.K.S.L. wrote the manuscript; all authors discussed the results, reviewed and edited the manuscript.

Corresponding author

Correspondence to Christopher Kai Shun Leung.

Ethics declarations

Competing interests

C.K.S.L. and A.K.N.L. hold a patent (US patent 62/571,559) for ROTA and are founders of AIROTA Diagnostics Limited. A licensing agreement is under discussion between the Chinese University of Hong Kong and Heidelberg Engineering (Heidelberg, Germany) and Carl Zeiss Meditec (Dublin, CA, United States). C.K.S.L. has received research support in the form of instruments, research grants and speaker honoraria from Carl Zeiss Meditec, Heidelberg Engineering and Topcon (Tokyo, Japan). R.N.W. has received instruments from Carl Zeiss Meditec, Heidelberg Engineering and Optovue (Fremont, CA, United States).

Additional information

Peer review information Nature Biomedical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, results, figures and tables.

Reporting Summary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, C.K.S., Lam, A.K.N., Weinreb, R.N. et al. Diagnostic assessment of glaucoma and non-glaucomatous optic neuropathies via optical texture analysis of the retinal nerve fibre layer. Nat. Biomed. Eng 6, 593–604 (2022). https://doi.org/10.1038/s41551-021-00813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00813-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing