Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Brain-wide Cas9-mediated cleavage of a gene causing familial Alzheimer’s disease alleviates amyloid-related pathologies in mice

Abstract

The pathology of familial Alzheimer’s disease, which is caused by dominant mutations in the gene that encodes amyloid-beta precursor protein (APP) and in those that encode presenilin 1 and presenilin 2, is characterized by extracellular amyloid plaques and intracellular neurofibrillary tangles in multiple brain regions. Here we show that the brain-wide selective disruption of a mutated APP allele in transgenic mouse models carrying the human APP Swedish mutation alleviates amyloid-beta-associated pathologies for at least six months after a single intrahippocampal administration of an adeno-associated virus that encodes both Cas9 and a single-guide RNA that targets the mutation. We also show that the deposition of amyloid-beta, as well as microgliosis, neurite dystrophy and the impairment of cognitive performance, can all be ameliorated when the CRISPR–Cas9 construct is delivered intravenously via a modified adeno-associated virus that can cross the blood–brain barrier. Brain-wide disease-modifying genome editing could represent a viable strategy for the treatment of familial Alzheimer’s disease and other monogenic diseases that affect multiple brain regions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Design and validation of CRISPR–Cas9-mediated genome editing to disrupt the mutant APPswe allele.
Fig. 2: Intrahippocampal AAV-mediated Cas9-SW1 editing decreases the amyloid-plaque burden in 5XFAD mice.
Fig. 3: Intrahippocampal AAV-mediated Cas9-SW1 editing decreases gliosis in 5XFAD mice.
Fig. 4: Intrahippocampal AAV-mediated Cas9-SW1 editing improves neuronal functions in 5XFAD mice.
Fig. 5: Intrahippocampal AAV-mediated delivery of Cas9-SW1 decreases pathologies associated with Alzheimer’s disease in APP/PS1 mice.
Fig. 6: Systemic delivery of AAV-PHP.eB-mediated Cas9-SW1 globally decreases amyloid-plaque burden in 5XFAD mice.
Fig. 7: Systemic delivery of AAV-PHP.eB-mediated Cas9-SW1 decreases microgliosis and neurite dystrophy, and improves cognitive performance in 5XFAD mice.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw data from whole-genome sequencing have been deposited in the NCBI Sequence Read Archive (SRA), with accession code PRJNA733582. The other raw and analysed datasets generated during the study are available for research purposes from the corresponding author on reasonable request, as they are too large to be publicly shared.

References

  1. 1.

    Cai, Y., An, S. S. & Kim, S. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin. Interv. Aging 10, 1163–1172 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Campion, D. et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet. 65, 664–670 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Cacace, R., Sleegers, K. & Van Broeckhoven, C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement. 12, 733–748 (2016).

    PubMed  Article  Google Scholar 

  4. 4.

    Harper, P. S. The epidemiology of Huntington’s disease. Hum. Genet. 89, 365–376 (1992).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Chio, A. et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41, 118–130 (2013).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Serrano-Pozo, A., Frosch, M. P., Masliah, E. & Hyman, B. T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1, a006189 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Braak, H. & Braak, E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol. Aging 18, 351–357 (1997).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Ingusci, S., Verlengia, G., Soukupova, M., Zucchini, S. & Simonato, M. Gene therapy tools for brain diseases. Front. Pharmacol. 10, 724 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Bedbrook, C. N., Deverman, B. E. & Gradinaru, V. Viral strategies for targeting the central and peripheral nervous systems. Annu. Rev. Neurosci. 41, 323–348 (2018).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Zeng, J. et al. TRIM9-mediated resolution of neuroinflammation confers neuroprotection upon ischemic stroke in mice. Cell Rep. 27, 549–560.e6 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Ortiz-Virumbrales, M. et al. CRISPR/Cas9-correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons. Acta Neuropathol. Commun. 5, 77 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Gyorgy, B. et al. CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol. Ther. Nucleic Acids 11, 429–440 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Wang, B. et al. γ-Secretase gene mutations in familial acne inversa. Science 330, 1065 (2010).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Mullan, M. et al. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nat. Genet. 1, 345–347 (1992).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Citron, M. et al. Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc. Natl Acad. Sci. USA 91, 11993–11997 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Johnston, J. A. et al. Increased β-amyloid release and levels of amyloid precursor protein (APP) in fibroblast cell lines from family members with the Swedish Alzheimer’s disease APP670/671 mutation. FEBS Lett. 354, 274–278 (1994).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Wiedenheft, B. et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl Acad. Sci. USA 108, 10092–10097 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Gao, X. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553, 217–221 (2018).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Mashiko, D. et al. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci. Rep. 3, 3355 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Kimura, R. & Ohno, M. Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol. Dis. 33, 229–235 (2009).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Shao, C. Y., Mirra, S. S., Sait, H. B., Sacktor, T. C. & Sigurdsson, E. M. Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Aβ and tau pathology in transgenic mouse models of Alzheimer’s disease. Acta Neuropathol. 122, 285–292 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Gowrishankar, S. et al. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc. Natl Acad. Sci. USA 112, E3699–E3708 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Sharoar, M. G., Hu, X., Ma, X. M., Zhu, X. & Yan, R. Sequential formation of different layers of dystrophic neurites in Alzheimer’s brains. Mol. Psychiatry 24, 1369–1382 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Spires-Jones, T. L. & Hyman, B. T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82, 756–771 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Woodhouse, A., West, A. K., Chuckowree, J. A., Vickers, J. C. & Dickson, T. C. Does β-amyloid plaque formation cause structural injury to neuronal processes? Neurotox. Res. 7, 5–15 (2005).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Jankowsky, J. L. et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum. Mol. Genet. 13, 159–170 (2004).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Garcia-Alloza, M. et al. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol. Dis. 24, 516–524 (2006).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Fu, A. K. et al. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc. Natl Acad. Sci. USA 113, E2705–E2713 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Lalonde, R., Kim, H. D., Maxwell, J. A. & Fukuchi, K. Exploratory activity and spatial learning in 12-month-old APP695SWE/co+PS1/ΔE9 mice with amyloid plaques. Neurosci. Lett. 390, 87–92 (2005).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Choi, J. H. et al. Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in neurons. Mol. Brain 7, 17 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Patricio, M. I., Barnard, A. R., Orlans, H. O., McClements, M. E. & MacLaren, R. E. Inclusion of the woodchuck hepatitis virus posttranscriptional regulatory element enhances AAV2-driven transduction of mouse and human retina. Mol. Ther. Nucleic Acids 6, 198–208 (2017).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T. A. & Wirths, O. Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 33, 196.e29–40 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Tible, M. et al. PKR knockout in the 5xFAD model of Alzheimer’s disease reveals beneficial effects on spatial memory and brain lesions. Aging Cell 18, e12887 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Cruts, M., Theuns, J. & Van Broeckhoven, C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum. Mutat. 33, 1340–1344 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Kleinstiver, B. P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR–Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Nagata, K. et al. Generation of App knock-in mice reveals deletion mutations protective against Alzheimer’s disease-like pathology. Nat. Commun. 9, 1800 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Park, H. et al. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat. Neurosci. 22, 524–528 (2019).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Filser, S. et al. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol. Psychiatry 77, 729–739 (2015).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Ou-Yang, M.-H. et al. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci. Transl. Med. 10, eaao5620 (2018).

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Blume, T. et al. BACE1 inhibitor MK-8931 alters formation but not stability of dendritic spines. Front. Aging Neurosci. 10, 229 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Ravindra Kumar, S. et al. Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nat. Methods 17, 541–550 (2020).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Flytzanis, N. C. et al. Broad gene expression throughout the mouse and marmoset brain after intravenous delivery of engineered AAV capsids. Preprint at bioRxiv https://doi.org/10.1101/2020.06.16.152975 (2020).

  51. 51.

    Bloch, D. B. et al. Sp110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Mol. Cell. Biol. 20, 6138–6146 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Mo, W. & Zhang, J. T. Human ABCG2: structure, function, and its role in multidrug resistance. Int J. Biochem Mol. Biol. 3, 1–27 (2012).

    CAS  PubMed  Google Scholar 

  53. 53.

    Liang, Z. et al. The pseudokinase CaMKv is required for the activity-dependent maintenance of dendritic spines. Nat. Commun. 7, 13282 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Sun, J. et al. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nat. Commun. 10, 53 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Hocquemiller, M., Giersch, L., Audrain, M., Parker, S. & Cartier, N. Adeno-associated virus-based gene therapy for CNS diseases. Hum. Gene Ther. 27, 478–496 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Hudry, E. & Vandenberghe, L. H. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 101, 839–862 (2019).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Challis, R. C. et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat. Protoc. 14, 379–414 (2019).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Keane, T. M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289–294 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Wojtowicz, J. M. & Kee, N. BrdU assay for neurogenesis in rodents. Nat. Protoc. 1, 1399–1405 (2006).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Styren, S. D., Hamilton, R. L., Styren, G. C. & Klunk, W. E. X-34, a fluorescent derivative of Congo red: a novel histochemical stain for Alzheimer’s disease pathology. J. Histochem. Cytochem. 48, 1223–1232 (2000).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Seo, J. et al. Activity-dependent p25 generation regulates synaptic plasticity and Aβ-induced cognitive impairment. Cell 157, 486–498 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Lee, K. et al. Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD mouse model of Alzheimer’s disease. Sci. Rep. 6, 34433 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Devi, L. & Ohno, M. Mitochondrial dysfunction and accumulation of the β-secretase-cleaved C-terminal fragment of APP in Alzheimer’s disease transgenic mice. Neurobiol. Dis. 45, 417–424 (2012).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Liu, W.-Y. Fu, X. Wang, K.-W. Hung, C. Kwong, R. M. Delos Reyes, K. Cheung, N. Mullapudi, E. Tam, J. Zhang, H. Cao, S.-F. Li and P.-O. Chiu of the Hong Kong University of Science and Technology; and B. E. Deverman, K. Beadle and Y. Lei of California Institute of Technology for their excellent technical assistance. We are grateful to all members of the Ip laboratory for discussions. This study was supported in part by the National Key R&D Program of China (2018YFE0203600), the Guangdong Provincial Key S&T Program (2018B030336001), the Guangdong Provincial Fund for Basic and Applied Basic Research (2019B1515130004), the Hong Kong Research Grants Council Theme-based Research Scheme (T13-605/18-W), the Area of Excellence Scheme of the University Grants Committee (AoE/M-604/16), the Innovation and Technology Commission (ITCPD/17-9), the Lee Hysan Foundation (LHF17SC01), the Shenzhen Knowledge Innovation Program (JCYJ20180507183642005 and JCYJ20200109115631248), the Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (project number: 2019SHIBS0001), the HKUST-SIAT Joint Laboratory for Brain Science for technical platform support, and the Beckman Institute for CLARITY, Optogenetics and Vector Engineering Research for technology development and broad dissemination (clover.caltech.edu (V.G.) and the CZI Neurodegeneration Challenge Network (V.G.)).

Author information

Affiliations

Authors

Contributions

Y.D., T.Y., A.K.Y.F. and N.Y.I. designed the research; Y.D., T.Y., Z.Q., A.M., X.Z., K.-C.L., Yuewen Chen and Yu Chen performed the research; Y.D., T.Y., A.K.Y.F. and N.Y.I. analysed the data; X.Z. performed bioinformatics analysis; V.G. and N.Y.I. contributed to the design and availability of reagents/analytic tools; and Y.D., T.Y., A.K.Y.F. and N.Y.I. wrote the paper with input from all authors.

Corresponding author

Correspondence to Nancy Y. Ip.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks Brandon Harvey, Brigitte van Zundert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Supplementary Dataset

Identified somatic mutations as potential off-target events.

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Ye, T., Qu, Z. et al. Brain-wide Cas9-mediated cleavage of a gene causing familial Alzheimer’s disease alleviates amyloid-related pathologies in mice. Nat Biomed Eng (2021). https://doi.org/10.1038/s41551-021-00759-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing