Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood–brain barrier

Abstract

The neurovascular unit, which consists of vascular cells surrounded by astrocytic end-feet and neurons, controls cerebral blood flow and the permeability of the blood–brain barrier (BBB) to maintain homeostasis in the neuronal milieu. Studying how some pathogens and drugs can penetrate the human BBB and disrupt neuronal homeostasis requires in vitro microphysiological models of the neurovascular unit. Here we show that the neurotropism of Cryptococcus neoformans—the most common pathogen causing fungal meningitis—and its ability to penetrate the BBB can be modelled by the co-culture of human neural stem cells, brain microvascular endothelial cells and brain vascular pericytes in a human-neurovascular-unit-on-a-chip maintained by a stepwise gravity-driven unidirectional flow and recapitulating the structural and functional features of the BBB. We found that the pathogen forms clusters of cells that penetrate the BBB without altering tight junctions, suggesting a transcytosis-mediated mechanism. The neurovascular-unit-on-a-chip may facilitate the study of the mechanisms of brain infection by pathogens, and the development of drugs for a range of brain diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of the 3D microfluidic hNVU chip study.
Fig. 2: Characterization of collagen I and BHEM hydrogels.
Fig. 3: Generation of a neurovascular unit with a BBB by in situ NSC differentiation in the hNVU chip.
Fig. 4: Characterization of BBB permeability in the hNVU chip.
Fig. 5: Barrier function and physiological responses of the BBB in the hNVU chip.
Fig. 6: Fungal brain-infection model using the hNVU chip.
Fig. 7: A multi-organ hNVU chip model for fungal neurotropism study.
Fig. 8: Screening for the pathogenicity of C. neoformans mutants in the multi-organ hNVU chip.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within the paper and its Supplementary Information. The datasets from the quantitative analyses generated during this study, including source data and the data used to make the figures as well as all images, are too large and numerous to be publicly shared, but they are available for research purposes from the corresponding authors on reasonable request. RNA-seq data have been deposited in the NCBI Gene Expression Omnibus (GEO), with accession number GSE171937.

Code availability

MATLAB was used to analyse results of fluorescence recovery after photobleaching experiments. The codes used for the analysis can be provided on request.

References

  1. Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Wolburg, H. & Lippoldt, A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc. Pharmacol. 38, 323–337 (2002).

    Article  CAS  Google Scholar 

  3. Schinkel, A. H. P-glycoprotein, a gatekeeper in the blood–brain barrier. Adv. Drug Deliv. Rev. 36, 179–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Karssen, A. et al. Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology 142, 2686–2694 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Willner, P. Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog. Neuropsychopharmacol. Biol. Psychiatry 10, 677–690 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Dixit, R. & Boelsterli, U. A. Healthy animals and animal models of human disease(s) in safety assessment of human pharmaceuticals, including therapeutic antibodies. Drug Discov. Today 12, 336–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Vu, K., Weksler, B., Romero, I., Couraud, P.-O. & Gelli, A. Immortalized human brain endothelial cell line HCMEC/D3 as a model of the blood–brain barrier facilitates in vitro studies of central nervous system infection by Cryptococcus neoformans. Eukaryot. Cell 8, 1803–1807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vu, K., Eigenheer, R. A., Phinney, B. S. & Gelli, A. Cryptococcus neoformans promotes its transmigration into the CNS by inducing molecular and cellular changes in brain endothelial cells. Infect. Immun. 81, 3139–3147 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vu, K. et al. Invasion of the central nervous system by Cryptococcus neoformans requires a secreted fungal metalloprotease. mBio 5, e01101–e01114 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cardoso, F. L., Brites, D. & Brito, M. A. Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res. Rev. 64, 328–363 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Dalvi, S. et al. The blood brain barrier — regulation of fatty acid and drug transport. Neurochemistry (ed. Heinbockel, T.) 1–33 (2014).

  12. Booth, R. & Kim, H. Characterization of a microfluidic in vitro model of the blood–brain barrier (μBBB). Lab Chip 12, 1784–1792 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Prabhakarpandian, B. et al. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 13, 1093–1101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Griep, L. et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood–brain barrier function. Biomed. Microdevices 15, 145–150 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Yeon, J. H. et al. Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed. Microdevices 14, 1141–1148 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Brown, J. A. et al. Metabolic consequences of inflammatory disruption of the blood–brain barrier in an organ-on-chip model of the human neurovascular unit. J. Neuroinflammation 13, 1–17 (2016).

    Article  CAS  Google Scholar 

  17. Odijk, M. et al. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems. Lab Chip 15, 745–752 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Herland, A. et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain barrier on a chip. PLoS ONE 11, e0150360 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Campisi, M. et al. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180, 117–129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maoz, B. M. et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36, 865 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Park, T.-E. et al. Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat. Commun. 10, 2621 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rajasingham, R. et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect. Dis. 17, 873–881 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sabiiti, W. & May, R. C. Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans. Future Microbiol. 7, 1297–1313 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Xue, C. Cryptococcus and beyond—inositol utilization and its implications for the emergence of fungal virulence. PLoS Pathog. 8, e1002869 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yang, K. et al. A microfluidic array for quantitative analysis of human neural stem cell self-renewal and differentiation in three-dimensional hypoxic microenvironment. Biomaterials 34, 6607–6614 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Shin, Y. et al. Reconstituting vascular microenvironment of neural stem cell niche in three‐dimensional extracellular matrix. Adv. Healthc. Mater. 3, 1457–1464 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Cucullo, L., Hossain, M., Puvenna, V., Marchi, N. & Janigro, D. The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci. 12, 40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shin, J. et al. Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy. Adv. Funct. Mater. 25, 3814–3824 (2015).

    Article  CAS  Google Scholar 

  29. Yang, K. et al. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials 33, 6952–6964 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, H., Rho, J. & Messersmith, P. B. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv. Mater. 21, 431–434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, H.-J. et al. Catechol-functionalized hyaluronic acid hydrogels enhance angiogenesis and osteogenesis of human adipose-derived stem cells in critical tissue defects. Biomacromolecules 17, 1939–1948 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Mi, H., Haeberle, H. & Barres, B. A. Induction of astrocyte differentiation by endothelial cells. J. Neurosci. 21, 1538–1547 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carvey, P. M., Hendey, B. & Monahan, A. J. The blood–brain barrier in neurodegenerative disease: a rhetorical perspective. J. Neurochem. 111, 291–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Brachvogel, B. et al. Isolated Anxa5+/Sca-1+ perivascular cells from mouse meningeal vasculature retain their perivascular phenotype in vitro and in vivo. Exp. Cell. Res. 313, 2730–2743 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Baumann, N. & Pham-Dinh, D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev. 81, 871–927 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Brown, J. A. et al. Recreating blood–brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor. Biomicrofluidics 9, 054124 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ahn, S. I. et al. Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nat. Commun. 11, 175 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Essodaigui, M., Broxterman, H. & Garnier-Suillerot, A. Kinetic analysis of calcein and calcein−acetoxymethylester efflux mediated by the multidrug resistance protein and P-glycoprotein. Biochemistry 37, 2243–2250 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Deli, M. A., Ábrahám, C. S., Kataoka, Y. & Niwa, M. Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell. Mol. Neurobiol. 25, 59–127 (2005).

    Article  PubMed  Google Scholar 

  42. Mark, K. S., Trickler, W. J. & Miller, D. W. Tumor necrosis factor-α induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J. Pharmacol. Exp. Ther. 297, 1051–1058 (2001).

    CAS  PubMed  Google Scholar 

  43. Varatharaj, A. & Galea, I. The blood–brain barrier in systemic inflammation. Brain Behav. Immun. 60, 1–12 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. May, R. C., Stone, N. R., Wiesner, D. L., Bicanic, T. & Nielsen, K. Cryptococcus: from environmental saprophyte to global pathogen. Nat. Rev. Microbiol. 14, 106 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Kaufman-Francis, K. et al. The early innate immune response to, and phagocyte-dependent entry of, Cryptococcus neoformans map to the perivascular space of cortical post-capillary venules in neurocryptococcosis. Am. J. Pathol. 188, 1653–1665 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Ngamskulrungroj, P., Chang, Y., Sionov, E. & Kwon-Chung, K. J. The primary target organ of Cryptococcus gattii is different from that of Cryptococcus neoformans in a murine model. mBio 3, e00103–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bielska, E. & May, R. C. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res. 16, fov106 (2016).

    Article  PubMed  CAS  Google Scholar 

  48. Liu, T.-B. et al. Brain inositol is a novel stimulator for promoting Cryptococcus penetration of the blood-brain barrier. PLoS Pathog. 9, e1003247 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jung, K.-W. et al. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat. Commun. 6, 6757 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, K.-T. et al. Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nat. Commun. 7, 12766 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, K.-T. et al. Fungal kinases and transcription factors regulating brain infection in Cryptococcus neoformans. Nat. Commun. 11, 1–15 (2020).

    Google Scholar 

  52. Bott, K. et al. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 31, 8454–8464 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Rao, R. R., Peterson, A. W., Ceccarelli, J., Putnam, A. J. & Stegemann, J. P. Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis 15, 253–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Levental, I., Georges, P. C. & Janmey, P. A. Soft biological materials and their impact on cell function. Soft Matter 3, 299–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Lu, Y.-B. et al. Viscoelastic properties of individual glial cells and neurons in the CNS. Proc. Natl Acad. Sci. USA 103, 17759–17764 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bignami, A., Hosley, M. & Dahl, D. Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix. Brain Struct. Funct. 188, 419–433 (1993).

    CAS  Google Scholar 

  57. Jin, Y. et al. Three-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neurons. Nat. Biomed. Eng. 2, 522 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Cho, A.-N. et al. Aligned brain extracellular matrix promotes differentiation and myelination of human-induced pluripotent stem cell-derived oligodendrocytes. ACS Appl. Mater. Interfaces 11, 15344–15353 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Maeda, N. Proteoglycans and neuronal migration in the cerebral cortex during development and disease. Front. Neurosci. 9, 98 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brakebusch, C. et al. Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Mol. Cell. Biol. 22, 7417–7427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Margolis, R. K., Rauch, U., Maurel, P. & Margolis, R. U. Neurocan and phosphacan: two major nervous tissue-specific chondroitin sulfate proteoglycans. Perspect. Dev. Neurobiol. 3, 273–290 (1996).

    CAS  PubMed  Google Scholar 

  62. Wurmser, A. E., Palmer, T. D. & Gage, F. H. Cellular interactions in the stem cell niche. Science 304, 1253–1255 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, J. D., Khafagy, E.-S., Khanafer, K., Takayama, S. & ElSayed, M. E. Organization of endothelial cells, pericytes, and astrocytes into a 3D microfluidic in vitro model of the blood–brain barrier. Mol. Pharm. 13, 895–906 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Adriani, G., Ma, D., Pavesi, A., Kamm, R. D. & Goh, E. L. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood–brain barrier. Lab Chip 17, 448–459 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Seo, J. H. et al. Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury. J. Clin. Invest. 123, 782–6 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Banerjee, S. & Bhat, M. A. Neuron-glial interactions in blood–brain barrier formation. Annu. Rev. Neurosci. 30, 235–258 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dohgu, S. et al. Autocrine and paracrine up-regulation of blood–brain barrier function by plasminogen activator inhibitor-1. Microvasc. Res. 81, 103–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Shindo, A. et al. Astrocyte-derived pentraxin 3 supports blood–brain barrier integrity under acute phase of stroke. Stroke 47, 1094–1100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Durieu‐Trautmann, O. et al. Nitric oxide and endothelin secretion by brain microvessel endothelial cells: regulation by cyclic nucleotides. J. Cell. Physiol. 155, 104–111 (1993).

    Article  PubMed  Google Scholar 

  70. Gadea, A., Schinelli, S. & Gallo, V. Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J. Neurosci. 28, 2394–2408 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bauer, B., Hartz, A. M. & Miller, D. S. Tumor necrosis factor α and endothelin-1 increase P-glycoprotein expression and transport activity at the blood–brain barrier. Mol. Pharmacol. 71, 667–675 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Aplin, A. C., Zhu, W.-H., Fogel, E. & Nicosia, R. F. Vascular regression and survival are differentially regulated by MT1-MMP and TIMPs in the aortic ring model of angiogenesis. Am. J. Physiol. Cell Physiol. 297, C471–C480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lawler, J. The functions of thrombospondin-1 and-2. Curr. Opin. Cell Biol. 12, 634–640 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Gao, Q., Chen, K., Gao, L., Zheng, Y. & Yang, Y.-G. Thrombospondin-1 signaling through CD47 inhibits cell cycle progression and induces senescence in endothelial cells. Cell Death Dis. 7, e2368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cunningham, K. S. & Gotlieb, A. I. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Investig. 85, 9 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Helmke, B. P., Goldman, R. D. & Davies, P. F. Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ. Res. 86, 745–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, T. Y. J. & Gotlieb, A. I. Microfilaments and microtubules maintain endothelial integrity. Microsc. Res. Tech. 60, 115–127 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Akimoto, S., Mitsumata, M., Sasaguri, T. & Yoshida, Y. Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21Sdi1/Cip1/Waf1. Circ. Res. 86, 185–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Shao, J. et al. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab Chip 9, 3118–3125 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Stone, P. H. et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans. Circulation 108, 438–444 (2003).

    Article  PubMed  Google Scholar 

  81. Pan, W. & Kastin, A. J. TNFα transport across the blood–brain barrier is abolished in receptor knockout mice. Exp. Neurol. 174, 193–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Brumble, L. et al. Fungal infections of the central nervous system: clinical, radiographic and laboratory manifestations. J. Microbiol. Exp. 5, 00167 (2017).

    Google Scholar 

  83. Shi, M. & Mody, C. H. Fungal infection in the brain: what we learned from intravital imaging. Front. Immunol. 7, 292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Stie, J., Bruni, G. & Fox, D. Surface-associated plasminogen binding of Cryptococcus neoformans promotes extracellular matrix invasion. PLoS ONE 4, e5780 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Shi, M. et al. Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. J. Clin. Investig. 120, 1683–1693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Charlier, C. et al. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect. Immun. 77, 120–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Santiago-Tirado, F. H., Onken, M. D., Cooper, J. A., Klein, R. S. & Doering, T. L. Trojan horse transit contributes to blood–brain barrier crossing of a eukaryotic pathogen. mBio 8, e02183–02116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chaka, W. et al. Cytokine profiles in cerebrospinal fluid of human immunodeficiency virus—infected patients with cryptococcal meningitis: no leukocytosis despite high interleukin-8 levels. J. Infect. Dis. 176, 1633–1636 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Einsiedel, L., Gordon, D. L. & Dyer, J. R. Paradoxical inflammatory reaction during treatment of Cryptococcus neoformans var. gattii meningitis in an HIV-seronegative woman. Clin. Infect. Dis. 39, e78–e82 (2004).

    Article  PubMed  Google Scholar 

  90. Porte, R. et al. The long pentraxin PTX3 as a humoral innate immunity functional player and biomarker of infections and sepsis. Front. Immunol. 10, 794 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martin-Manso, G. et al. Endogenous thrombospondin-1 regulates leukocyte recruitment and activation and accelerates death from systemic candidiasis. PLoS ONE 7, e48775 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Haris, M., Cai, K., Singh, A., Hariharan, H. & Reddy, R. In vivo mapping of brain myo-inositol. Neuroimage 54, 2079–2085 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Hicks, J. K., D’Souza, C. A., Cox, G. M. & Heitman, J. Cyclic AMP-dependent protein kinase catalytic subunits have divergent roles in virulence factor production in two varieties of the fungal pathogen Cryptococcus neoformans. Eukaryot. Cell 3, 14–26 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ward, L. D. & Bussemaker, H. J. Predicting functional transcription factor binding through alignment-free and affinity-based analysis of orthologous promoter sequences. Bioinformatics 24, i165–i171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Klingelhoefer, L. & Reichmann, H. Pathogenesis of Parkinson disease—the gut–brain axis and environmental factors. Nat. Rev. Neurol. 11, 625 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Ghaisas, S., Maher, J. & Kanthasamy, A. Gut microbiome in health and disease: Linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol. Ther. 158, 52–62 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (2017M3C7A1047659, 2016R1E1A1A01943365, 2021R1A2C3004262 and 2018R1A5A1025077) from the National Research Foundation of Korea funded by the Ministry of Science and ICT, Republic of Korea. This work was also supported by the Korea Evaluation Institute of Industrial Technology grant funded by the Korea government (MSIT) (no. 20009125) and the Institute for Basic Science (IBS-R026-D1), and the Strategic Initiative for Microbiomes in Agriculture and Food funded by Ministry of Agriculture, Food and Rural Affairs (916006-2). We thank J. Cheon (Yonsei University and IBS) for his support with facilities and equipment for analyses.

Author information

Authors and Affiliations

Authors

Contributions

J.K. and K.-T.L. contributed equally to this work. J.K. and K.-T.L. designed, led the experiments, performed data analysis and wrote the paper. J.K. led the overall work on human cell culture, analysis and microfluidic systems. K.-T.L. performed overall work on fungal experiments and transcriptome analysis. J.S.L. and K.Y. cultured NSCs, J.S. prepared and characterized hydrogels and B.C. fabricated microfluidic chips. Y.S.C. prepared and performed proteomic analysis of BEM. N.C. and S.H.L. provided materials and advised on the data analyses. J.-H.L. advised on the data analyses and wrote the manuscript. Y.-S.B. and S.-W.C. designed and supervised the experiments and wrote the paper.

Corresponding authors

Correspondence to Yong-Sun Bahn or Seung-Woo Cho.

Ethics declarations

Competing interests

J.K., K.-T.L., Y.-S.B. and S.-W.C. are co-inventors on patent applications (Korean Patent 10-2019-0115272, US patent 17/277,640 and EP patent 19 863 762.1) related to the hNVU chip developed in the manuscript.

Additional information

Peer review information Nature Biomedical Engineering thanks John Wikswo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, references, figures, notes,video captions, and tables.

Reporting Summary

Supplementary Video 1

Live imaging of the fungal infection model. The video clip of C. neoformans wild-type cells stacking and penetrating the BBB in the hNVU chip.

Supplementary Video 2

3D confocal image of the C. neoformans penetration site. The 3D image was processed by IMARIS (Bitplane; http://www.bitplane.com).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lee, KT., Lee, J.S. et al. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood–brain barrier. Nat Biomed Eng 5, 830–846 (2021). https://doi.org/10.1038/s41551-021-00743-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00743-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research