Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of antigen-specific tolerance by nanobody–antigen adducts that target class-II major histocompatibility complexes

Abstract

The association of autoimmune diseases with particular allellic products of the class-II major histocompatibility complex (MHCII) region implicates the presentation of the offending self-antigens to T cells. Because antigen-presenting cells are tolerogenic when they encounter an antigen under non-inflammatory conditions, the manipulation of antigen presentation may induce antigen-specific tolerance. Here, we show that, in mouse models of experimental autoimmune encephalomyelitis, type 1 diabetes and rheumatoid arthritis, the systemic administration of a single dose of nanobodies that recognize MHCII molecules and conjugated to the relevant self-antigen under non-inflammatory conditions confers long-lasting protection against these diseases. Moreover, co-administration of a nanobody–antigen adduct and the glucocorticoid dexamethasone, conjugated to the nanobody via a cleavable linker, halted the progression of established experimental autoimmune encephalomyelitis in symptomatic mice and alleviated their symptoms. This approach may represent a means of treating autoimmune conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A single dose of VHHMHCII–MOG35–55 provides lasting protection against EAE.
Fig. 2: Splenic CD11c+ dendritic cells are responsible for VHHMHCII–MOG35–55 tolerance induction.
Fig. 3: VHHMHCII–MOG35–55 upregulates co-inhibitory receptors on MOG35–55-specific CD4 T cells.
Fig. 4: VHHMHCII–antigen-mediated tolerance is antigen specific.
Fig. 5: Therapeutic efficacy of VHHMHCII–antigen adducts.

Similar content being viewed by others

Data availability

The main data supporting the results of this study, including the nanobody sequences used, are available within the paper and its Supplementary Information. The transcriptomic datasets generated during the current study are available from the corresponding authors upon reasonable request.

References

  1. Hayter, S. M. & Cook, M. C. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun. Rev. 11, 754–765 (2012).

    Article  PubMed  Google Scholar 

  2. Morel, L. Mouse models of human autoimmune diseases: essential tools that require the proper controls. PLoS Biol. 2, E241 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bonifaz, L. C. et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 199, 815–824 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Idoyaga, J. et al. Comparable T helper 1 (TH1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc. Natl Acad. Sci. USA 108, 2384–2389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Duarte, J. N. et al. Generation of immunity against pathogens via single-domain antibody–antigen constructs. J. Immunol. 197, 4838–4847 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Van Elssen, C. et al. Noninvasive imaging of human immune responses in a human xenograft model of graft-versus-host disease. J. Nucl. Med. 58, 1003–1008 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fang, T. et al. Structurally defined αMHC-II nanobody–drug conjugates: a therapeutic and imaging system for B-cell lymphoma. Angew. Chem. Int. Ed. Engl. 55, 2416–2420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ingram, J. R., Schmidt, F. I. & Ploegh, H. L. Exploiting nanobodies’ singular traits. Annu. Rev. Immunol. 36, 695–715 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Pishesha, N., Ingram, J. R. & Ploegh, H. L. Sortase A: a model for transpeptidation and its biological applications. Annu. Rev. Cell Dev. Biol. 34, 163–188 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Villadangos, J. A. & Schnorrer, P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol. 7, 543–555 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Giralt, M., Molinero, A. & Hidalgo, J. Active induction of experimental autoimmune encephalomyelitis (EAE) with MOG35-55 in the mouse. Methods Mol. Biol. 1791, 227–232 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418, 983–988 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Moynihan, K. D. et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22, 1402–1410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Isaksson, M. et al. Conditional DC depletion does not affect priming of encephalitogenic TH cells in EAE. Eur. J. Immunol. 42, 2555–2563 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Bodhankar, S. et al. Estrogen-induced protection against experimental autoimmune encephalomyelitis is abrogated in the absence of B cells. Eur. J. Immunol. 41, 1165–1175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197, 1073–1081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ruffo, E. et al. Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor. Semin. Immunol. 42, 101305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thaker, Y. R. et al. Treg-specific LAG3 deletion reveals a key role for LAG3 in regulatory T cells to inhibit CNS autoimmunity. J. Immunol. 200, 101.7 (2018).

    Article  Google Scholar 

  22. Paterson, A. M. et al. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J. Exp. Med. 212, 1603–1621 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Katz, J. D. et al. Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Maffia, P. et al. Inducing experimental arthritis and breaking self-tolerance to joint-specific antigens with trackable, ovalbumin-specific T cells. J. Immunol. 173, 151–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Sehrawat, S. et al. CD8+ T cells from mice transnuclear for a TCR that recognizes a single H-2Kb-restricted MHV68 epitope derived from gB-ORF8 help control infection. Cell Rep. 1, 461–471 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Avalos, A. M. et al. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells. J. Exp. Med. 211, 365–379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bargh, J. D. et al. Cleavable linkers in antibody–drug conjugates. Chem. Soc. Rev. 48, 4361–4374 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Florez-Grau, G. et al. Tolerogenic dendritic cells as a promising antigen-specific therapy in the treatment of multiple sclerosis and neuromyelitis optica from preclinical to clinical trials. Front Immunol. 9, 1169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sharrack, B. et al. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE). Bone Marrow Transpl. 55, 283–306 (2020).

    Article  Google Scholar 

  32. Pishesha, N. et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc. Natl Acad. Sci. USA 114, 3157–3162 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilson, D. S. et al. Synthetically glycosylated antigens induce antigen-specific tolerance and prevent the onset of diabetes. Nat. Biomed. Eng. 3, 817–829 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Kontos, S. et al. Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc. Natl Acad. Sci. USA 110, E60–E68 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Lorentz, K. M. et al. Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase. Sci. Adv. 1, e1500112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kishimoto, T. K. & Maldonado, R. A. Nanoparticles for the induction of antigen-specific immunological tolerance. Front. Immunol. 9, 230 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pearson, R. M. et al. In vivo reprogramming of immune cells: technologies for induction of antigen-specific tolerance. Adv. Drug Deliv. Rev. 114, 240–255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iberg, C. A., Jones, A. & Hawiger, D. Dendritic cells as inducers of peripheral tolerance. Trends Immunol. 38, 793–804 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Henderson, J. G., Opejin, A., Jones, A., Gross, C. & Hawiger, D. CD5 instructs extrathymic regulatory T cell development in response to self and tolerizing antigens. Immunity 42, 471–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Vanderlugt, C. J. & Miller, S. D. Epitope spreading. Curr. Opin. Immunol. 8, 831–836 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Unanue, E. R. Antigen presentation in the autoimmune diabetes of the NOD mouse. Annu. Rev. Immunol. 32, 579–608 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. McCombs, J. R. & Owen, S. C. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J. 17, 339–351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nicolaou, K. C. & Rigol, S. The role of organic synthesis in the emergence and development of antibody–drug conjugates as targeted cancer therapies. Angew. Chem. Int. Ed. Engl. 58, 11206–11241 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Rashidian, M. et al. Noninvasive imaging of immune responses. Proc. Natl Acad. Sci. USA 112, 6146–6151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by a post-doctoral Junior Fellowship from the Harvard Society of Fellows (to N.P.), a mobility fellowship from the Swiss National Science Foundation (grant number P400P2_183857 to T.H.), a scholarship from the Dutch MS Research Foundation (to L.Y.S. and R.J.), an overseas grant from UiT The Arctic University of Norway (to A.I.) and an NIH Director’s Pioneer Award (grant number 1DP1AI150593-01 to H.L.P.). We also thank A. Regev for helpful discussions and laboratory equipment access.

Author information

Authors and Affiliations

Authors

Contributions

N.P. and H.L.P. designed and conceived of the study. N.P., T.H., L.Y.S., W.M. and R.J. contributed to data acquisition and analysed and interpreted the data. L.S.L., A.I., Y.J.X., T.F., N.M., W.P. III, H.R.S., M.A.R. and G.G.-S. contributed to data acquisition. N.P., L.Y.S., R.J. and H.L.P. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Novalia Pishesha or Hidde L. Ploegh.

Ethics declarations

Competing interests

The Boston Children’s Hospital has filed for patent protection (US Provisional Application Serial No. 63/154,455) on the technology described here, and N.P., T.H. and H.L.P. are named as inventors on those patents. The rest of the authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks Rikard Holmdahl, Howard Weiner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pishesha, N., Harmand, T., Smeding, L.Y. et al. Induction of antigen-specific tolerance by nanobody–antigen adducts that target class-II major histocompatibility complexes. Nat Biomed Eng 5, 1389–1401 (2021). https://doi.org/10.1038/s41551-021-00738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00738-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research