Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes


The rapid elimination of nanoparticles from the bloodstream by the mononuclear phagocyte system limits the activity of many nanoparticle formulations. Here, we show that inducing a slight and transient depletion of erythrocytes in mice (~5% decrease in haematocrit) by administrating a low dose (1.25 mg kg−1) of allogeneic anti-erythrocyte antibodies increases the circulation half-life of a range of short-circulating and long-circulating nanoparticle formulations by up to 32-fold. Treatment of the animals with anti-erythrocyte antibodies significantly improved the targeting of CD4+ cells in vivo with fluorescent anti-CD4-antibody-conjugated nanoparticles, the magnetically guided delivery of ferrofluid nanoparticles to subcutaneous tumour allografts and xenografts, and the treatment of subcutaneous tumour allografts with magnetically guided liposomes loaded with doxorubicin and magnetite or with clinically approved ‘stealthy’ doxorubicin liposomes. The transient and partial blocking of the mononuclear phagocyte system may enhance the performance of a wide variety of nanoparticle drugs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Effect of the MPS-cytoblockade on blood circulation of nanoparticles and microparticles.
Fig. 2: Characterizing the mechanism aspects of MPS-cytoblockade.
Fig. 3: Characterizing the functional aspects of MPS-cytoblockade.
Fig. 4: Safety aspects of MPS-cytoblockade.
Fig. 5: Safety aspects of MPS-cytoblockade using blood and urine tests.
Fig. 6: Biomedical applications of the MPS-cytoblockade.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets are too numerous to be readily shared publicly but can be made available from the corresponding author on reasonable request.


  1. 1.

    Cheng, C. J., Tietjen, G. T., Saucier-Sawyer, J. K. & Saltzman, W. M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov. 14, 239–247 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Xie, J., Lee, S. & Chen, X. Nanoparticle-based theranostic agents. Adv. Drug. Deliv. Rev. 62, 1064–1079 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Wilson, D. A., Nolte, R. J. M. & van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012).

    CAS  PubMed  Google Scholar 

  4. 4.

    Nikitin, M. P., Shipunova, V. O., Deyev, S. M. & Nikitin, P. I. Biocomputing based on particle disassembly. Nat. Nanotechnol. 9, 716–722 (2014).

    CAS  PubMed  Google Scholar 

  5. 5.

    Tregubov, A. A., Nikitin, P. I. & Nikitin, M. P. Advanced smart nanomaterials with integrated logic-gating and biocomputing: dawn of theranostic nanorobots. Chem. Rev. 118, 10294–10348 (2018).

    CAS  PubMed  Google Scholar 

  6. 6.

    Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    CAS  Google Scholar 

  7. 7.

    Amoozgar, Z. & Yeo, Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4, 219–233 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Schottler, S. et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).

    PubMed  Google Scholar 

  9. 9.

    Hong, R.-L. et al. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clin. Cancer Res. 5, 3645–3652 (1999).

    CAS  PubMed  Google Scholar 

  10. 10.

    Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).

    CAS  PubMed  Google Scholar 

  11. 11.

    Klibanov, A. L., Maruyama, K., Beckerleg, A. M., Torchilin, V. P. & Huang, L. Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim. Biophys. Acta 1062, 142–148 (1991).

    CAS  PubMed  Google Scholar 

  12. 12.

    Turk, M. J., Waters, D. J. & Low, P. S. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett. 213, 165–172 (2004).

    CAS  PubMed  Google Scholar 

  13. 13.

    Abu Lila, A. S., Kiwada, H. & Ishida, T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J. Control. Release 172, 38–47 (2013).

    CAS  PubMed  Google Scholar 

  14. 14.

    Lin, H., Chen, Y. & Shi, J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 47, 1938–1958 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Cherkasov, V. R. et al. Nanoparticle beacons: supersensitive smart materials with on/off-switchable affinity to biomedical targets. ACS Nano 14, 1792–1803 (2020).

    CAS  PubMed  Google Scholar 

  16. 16.

    Villa, C. H. et al. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Ther. Deliv. 6, 795–826 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zaitsev, S. et al. Targeting recombinant thrombomodulin fusion protein to red blood cells provides multifaceted thromboprophylaxis. Blood 119, 4779–4785 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zelepukin, I. V. et al. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale 11, 1636–1646 (2019).

    CAS  PubMed  Google Scholar 

  19. 19.

    Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Chambers, E. & Mitragotri, S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control. Release 100, 111–119 (2004).

    CAS  PubMed  Google Scholar 

  21. 21.

    van Rooijen, N. & Sanders, A. Liposome-mediated depletion of macrophages—mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 174, 83–93 (1994).

    PubMed  Google Scholar 

  22. 22.

    Tavares, A. J. et al. Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc. Natl Acad. Sci. USA 114, E10871–E10880 (2017).

    CAS  PubMed  Google Scholar 

  23. 23.

    Hardonk, M. J., Dijkhuis, F. W., Hulstaert, C. E. & Koudstaal, J. Heterogeneity of rat liver and spleen macrophages in gadolinium chloride-induced elimination and repopulation. J. Leukoc. Biol. 52, 296–302 (1992).

    CAS  PubMed  Google Scholar 

  24. 24.

    Lazar, G. The reticuloendothelial-blocking effect of rare earth metals in rats. J. Reticuloendothel. Soc. 13, 231–237 (1973).

    CAS  PubMed  Google Scholar 

  25. 25.

    Murray, I. M. The mechanism of blockade of the reticuloendothelial system. J. Exp. Med. 117, 139–147 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kao, Y. J. & Juliano, R. L. Interactions of liposomes with the reticuloendothelial system effects of reticuloendothelial blockade on the clearance of large unilamellar vesicles. Biochim. Biophys. Acta 677, 453–461 (1981).

    CAS  PubMed  Google Scholar 

  27. 27.

    Souhami, R. L. & Bradfield, J. W. B. The recovery of hepatic phagocytosis after blockade of Kupffer cells. J. Reticuloendothel. Soc. 16, 75–86 (1974).

    CAS  PubMed  Google Scholar 

  28. 28.

    Souhami, R. L., Patel, H. M. & Ryman, B. E. The effect of reticuloendothelial blockade on the blood clearance and tissue distribution of liposomes. Biochim. Biophys. Acta 674, 354–371 (1981).

    CAS  PubMed  Google Scholar 

  29. 29.

    Di Luzio, N. R. & Wooles, W. R. Depression of phagocytic activity and immune response by methyl palmitate. Am. J. Physiol. 206, 939–943 (1964).

    PubMed  Google Scholar 

  30. 30.

    Proffitt, R. et al. Liposomal blockade of the reticuloendothelial system: improved tumor imaging with small unilamellar vesicles. Science 220, 502–505 (1983).

    CAS  PubMed  Google Scholar 

  31. 31.

    Liu, D., Mori, A. & Huang, L. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim. Biophys. Acta 1104, 95–101 (1992).

    CAS  PubMed  Google Scholar 

  32. 32.

    Liu, T., Choi, H., Zhou, R. & Chen, I.-W. RES blockade: a strategy for boosting efficiency of nanoparticle drug. Nano Today 10, 11–21 (2015).

    Google Scholar 

  33. 33.

    Sun, X. et al. Improved tumor uptake by optimizing liposome based RES blockade strategy. Theranostics 7, 319–328 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Liu, L. et al. Decreased reticuloendothelial system clearance and increased blood half-life and immune cell labeling for nano- and micron-sized superparamagnetic iron-oxide particles upon pre-treatment with Intralipid. Biochim. Biophys. Acta 1830, 3447–3453 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Shibata, T. et al. Monoclonal anti-erythrocyte autoantibodies derived from NZB mice cause autoimmune hemolytic anemia by two distinct pathogenic mechanisms. Int. Immunol. 2, 1133–1141 (1990).

    CAS  PubMed  Google Scholar 

  36. 36.

    Fossati-Jimack, L. et al. High pathogenic potential of low-affinity autoantibodies in experimental autoimmune hemolytic anemia. J. Exp. Med. 190, 1689–1696 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Baudino, L. et al. Differential contribution of three activating IgG Fc receptors (Fc RI, Fc RIII, and Fc RIV) to IgG2a- and IgG2b-induced autoimmune hemolytic anemia in mice. J. Immunol. 180, 1948–1953 (2008).

    CAS  PubMed  Google Scholar 

  38. 38.

    da Silveira, S. A. et al. Complement activation selectively potentiates the pathogenicity of the IgG2b and IgG3 isotypes of a high affinity anti-erythrocyte autoantibody. J. Exp. Med. 195, 665–672 (2002).

    PubMed Central  Google Scholar 

  39. 39.

    Syed, S. N. et al. C5aR activation in the absence of C5a: a new disease mechanism of autoimmune hemolytic anemia in mice. Eur. J. Immunol. 48, 696–704 (2018).

    CAS  PubMed  Google Scholar 

  40. 40.

    Nikitin, P. I. & Vetoshko, P. M. Process of analysis of mixture of biological and/or chemical components with use of magnetic particles and device for its implementation. Russian patent RU2166751 (2000).

  41. 41.

    Nikitin, P. I., Vetoshko, P. M. & Ksenevich, T. I. New type of biosensor based on magnetic nanoparticle detection. J. Magn. Magn. Mater. 311, 445–449 (2007).

    CAS  Google Scholar 

  42. 42.

    Nikitin, M. P., Torno, M., Chen, H., Rosengart, A. & Nikitin, P. I. Quantitative real-time in vivo detection of magnetic nanoparticles by their nonlinear magnetization. J. Appl. Phys. 103, 07A304 (2008).

    Google Scholar 

  43. 43.

    Nikitin, M. P. et al. Ultrasensitive detection enabled by nonlinear magnetization of nanomagnetic labels. Nanoscale 10, 11642–11650 (2018).

    CAS  PubMed  Google Scholar 

  44. 44.

    Flannagan, R. S., Jaumouille, V. & Grinstein, S. The cell biology of phagocytosis. Annu. Rev. Pathol. 7, 61–98 (2012).

    CAS  PubMed  Google Scholar 

  45. 45.

    Bertrand, N. & Leroux, J.-C. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J. Control. Release 161, 152–163 (2012).

    CAS  PubMed  Google Scholar 

  46. 46.

    Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    da Silveira, S. A. et al. Complement activation selectively potentiates the pathogenicity of the IgG2b and IgG3 isotypes of a high affinity anti-erythrocyte autoantibody. J. Exp. Med. 195, 665–672 (2002).

    PubMed Central  Google Scholar 

  48. 48.

    Meyer, D. et al. Fc gamma RIII (CD16)-deficient mice show IgG isotype-dependent protection to experimental autoimmune hemolytic anemia. Blood 92, 3997–4002 (1998).

    CAS  PubMed  Google Scholar 

  49. 49.

    Haakenstad, A. O. & Mannik, M. Saturation of the reticuloendothelial system with soluble immune complexes. J. Immunol. 112, 1939–1948 (1974).

    CAS  PubMed  Google Scholar 

  50. 50.

    Siragam, V. et al. Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease? J. Clin. Invest. 115, 155–160 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Semple, J. W. et al. Anti-D (WinRho SD) treatment of children with chronic autoimmune thrombocytopenic purpura stimulates transient cytokine/chemokine production. Am. J. Hematol. 69, 225–227 (2002).

    CAS  PubMed  Google Scholar 

  52. 52.

    Robak, T. et al. Rozrolimupab, a mixture of 25 recombinant human monoclonal RhD antibodies, in the treatment of primary immune thrombocytopenia. Blood 120, 3670–3676 (2012).

    CAS  PubMed  Google Scholar 

  53. 53.

    Galanzha, E. I. et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4, 855–860 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Häfeli, U. O. Magnetically modulated therapeutic systems. Int. J. Pharm. 277, 19–24 (2004).

    PubMed  Google Scholar 

  55. 55.

    Al-Jamal, K. T. et al. Magnetic drug targeting: preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett. 16, 5652–5660 (2016).

    CAS  PubMed  Google Scholar 

  56. 56.

    Liang, P.-C. et al. Doxorubicin-modified magnetic nanoparticles as a drug delivery system for magnetic resonance imaging-monitoring magnet-enhancing tumor chemotherapy. Int. J. Nanomed. 11, 2021–2037 (2016).

    CAS  Google Scholar 

  57. 57.

    Rodriguez, P. L. et al. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Crow, A. R. & Lazarus, A. H. The mechanisms of action of intravenous immunoglobulin and polyclonal anti-D immunoglobulin in the amelioration of immune thrombocytopenic purpura: what do we really know? Transfus. Med. Rev. 22, 103–116 (2008).

    PubMed  Google Scholar 

  59. 59.

    Lazarus, A. H. Monoclonal versus polyclonal anti-D in the treatment of ITP. Expert Opin. Biol. Ther. 13, 1353–1356 (2013).

    CAS  PubMed  Google Scholar 

  60. 60.

    Villa, C. H., Seghatchian, J. & Muzykantov, V. Drug delivery by erythrocytes: “Primum non nocere”. Transfus. Apher. Sci. 55, 275–280 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Khoory, J. et al. Ligation of glycophorin A generates reactive oxygen species leading to decreased red blood cell function. PLoS ONE 11, e0141206 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Ryder, A. B., Zimring, J. C. & Hendrickson, J. E. Factors influencing rbc alloimmunization: lessons learned from murine models. Transfus. Med. Hemother. 41, 406–419 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Kontos, S., Kourtis, I. C., Dane, K. Y. & Hubbell, J. A. Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc. Natl Acad. Sci. USA 110, E60–E68 (2013).

    CAS  PubMed  Google Scholar 

  64. 64.

    Szebeni, J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol. Immunol. 61, 163–173 (2014).

    CAS  PubMed  Google Scholar 

  65. 65.

    Muzykantov, V. R., Smirnov, M. D. & Klibanov, A. L. Avidin attachment to red blood cells via a phospholipid derivative of biotin provides complement-resistant immunoerythrocytes. J. Immunol. Methods 158, 183–190 (1993).

    CAS  PubMed  Google Scholar 

  66. 66.

    Bratosin, D. et al. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie 80, 173–195 (1998).

    CAS  PubMed  Google Scholar 

  67. 67.

    van Dijk, H., Rademaker, P. M. & Willers, J. M. Estimation of classical pathway of mouse complement activity by use of sensitized rabbit erythrocytes. J. Immunol. Methods 39, 257–268 (1980).

    PubMed  Google Scholar 

Download references


We thank A. F. Topolskov (General Physics Institute, RAS) for engineering assistance; O. A. Kharlova (Diagnostic Centre 6 of Moscow Health Department) and A. В. Schekhter (First Moscow State Medical University) for help with histology; A. M. Sapozhnikov (Institute of Bioorganic Chemistry, RAS) for access to and help with FACScan; and R. I. Yakubovskaya (Moscow Oncology Research Centre) for supplying B16-F1 and LLC cell lines and support with establishing the mouse tumour model. Certain aspects of this multidisciplinary research were partially supported by the Russian Science Foundation grants 16-19-00131 (in vitro phagocytosis study; histology; toxicity and complement studies), 16-12-10543 (development of the MPQ measurement methodology and related detectors; MRI particle biodistribution study) and 17-74-20146 (inflammation study; nanoparticle characterization; RBC biodistribution study).

Author information




M.P.N. conceived the idea, designed the study and supervised the project. I.V.Z. performed all of the in vivo experiments, the toxicity study, and nanoparticle synthesis and characterization. M.P.N. and P.I.N. developed and optimized the MPQ-based technique for nanoparticle circulation measurements. V.O.S. performed all of the in vitro experiments and the cytokine and sepsis studies. I.L.S. performed in vitro phagocytosis studies and MPS-cytoblockade in rats, and co-performed toxicity experiments. M.P.N. co-performed the MRI measurements, in vitro phagocytosis studies and developed doxorubicin–magnetite liposomes. M.P.N., I.V.Z., S.M.D. and P.I.N. analysed data. M.P.N. and P.I.N. wrote the manuscript.

Corresponding author

Correspondence to Maxim P. Nikitin.

Ethics declarations

Competing interests

M.P.N., I.V.Z., S.M.D. and P.I.N. are inventors on patent applications (RU2014145276 and PCT/RU2015/000755) and a patent (RU2683020) related to the findings described in this manuscript. P.I.N. is a named inventor on MPQ-related patents (RU2166751 and RU2177611).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary figures, tables and notes.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikitin, M.P., Zelepukin, I.V., Shipunova, V.O. et al. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nat Biomed Eng 4, 717–731 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing