A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection


In organ transplantation, infection and rejection are major causes of graft loss. They are linked by the net state of immunosuppression. To diagnose and treat these conditions earlier, and to improve long-term patient outcomes, refined strategies for the monitoring of patients after graft transplantation are needed. Here, we show that a fast and inexpensive assay based on CRISPR–Cas13 accurately detects BK polyomavirus DNA and cytomegalovirus DNA from patient-derived blood and urine samples, as well as CXCL9 messenger RNA (a marker of graft rejection) at elevated levels in urine samples from patients experiencing acute kidney transplant rejection. The assay, which we adapted for lateral-flow readout, enables—via simple visualization—the post-transplantation monitoring of common opportunistic viral infections and of graft rejection, and should facilitate point-of-care post-transplantation monitoring.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CRISPR diagnostics enable single-molecule detection of BKV and CMV DNA.
Fig. 2: CRISPR detects BKV and CMV from human urine and blood samples over a wide range of viral loads.
Fig. 3: CRISPR-based diagnostics can detect CXCL9 mRNA as an indicator for acute cellular rejection.
Fig. 4: Lateral flow enables detection of viral DNA (BKV, CMV) for point-of-care testing.
Fig. 5: Monitoring of CXCL9 mRNA levels with lateral flow.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary information files. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request, and the availability of raw patient data is subject to approval from the Institutional Review Board.

Code availability

The lateral-flow quantification app code is available at https://github.com/jackievaleri/lateral_flow_quantification_app.


  1. 1.

    Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356, 438–442 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Myhrvold, C. et al. Field-deployable viral diagnostics using CRISPR–Cas13. Science 448, 444–448 (2018).

    Article  Google Scholar 

  3. 3.

    Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Chen, J. S. et al. CRISPR–Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR–Cas14 enzymes. Science 362, 839–842 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Pardee, K. et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165, 1255–1266 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Haijan, R. et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 3, 427–437 (2019).

    Article  Google Scholar 

  8. 8.

    Wu, Y., Liu, S.-X., Wang, F. & Zeng, M.-S. Room temperature detection of plasma Epstein–Barr virus DNA with CRISPR–Cas13. Clin. Chem. 65, 591–592 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    Lamb, K. E., Lodhi, S. & Meier-Kriesche, H.-U. Long-term renal allograft survival in the United States: a critical reappraisal. Am. J. Transplant. 11, 450–462 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    Tullius, S. G. & Rabb, H. Improving the supply and quality of deceased-donor organs for transplantation. N. Engl. J. Med. 378, 1920–1929 (2018).

    Article  Google Scholar 

  11. 11.

    Wekerle, T., Segev, D., Lechler, R. & Oberbauer, R. Strategies for long-term preservation of kidney graft function. Lancet 389, 2152–2162 (2017).

    Article  Google Scholar 

  12. 12.

    Ross, S. A., Novak, Z., Pati, S. & Boppana, S. B. Overview of the diagnosis of cytomegalovirus infection. Infect. Disord. Drug Targets 11, 466–474 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Randhawa, P. et al. Correlates of quantitative measurement of BK polyomavirus (BKV) DNA with clinical course of BKV infection in renal transplant patients. J. Clin. Microbiol. 42, 1176–1180 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    Fishman, J. A. Infection in organ transplantation. Am. J. Transplant. 17, 856–879 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Sepkowitz, K. A. Opportunistic infections in patients with and patients without acquired immunodeficiency syndrome. Clin. Infect. Dis. 34, 1098–1107 (2002).

    Article  Google Scholar 

  16. 16.

    Sundsfjord, A. et al. BK and JC viruses in human immunodeficiency virus type 1-infected persons: prevalence, excretion, viremia, and viral regulatory regions. J. Infect. Dis. 169, 485–490 (1994).

    CAS  Article  Google Scholar 

  17. 17.

    Jackson, J. A. et al. Urinary chemokines CXCL9 and CXCL10 are noninvasive markers of renal allograft rejection and BK viral infection. Am. J. Transplant. 11, 2228–2234 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Hricik, D. E. et al. Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury. Am. J. Transplant. 13, 2634–2644 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Schaub, S. et al. Urinary CXCL9 and CXCL10 levels correlate with the extent of subclinical tubulitis. Am. J. Transplant. 9, 1347–1353 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Rabant, M. et al. Early low urinary CXCL9 and CXCL10 might predict immunological quiescence in clinically and histologically stable kidney recipients. Am. J. Transplant. 16, 1868–1881 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Fishman, J. A. Infection in solid-organ transplant recipients. N. Engl. J. Med. 357, 2601–2614 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    El-Zoghby, Z. M. et al. Identifying specific causes of kidney allograft loss. Am. J. Transplant. 9, 527–535 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Henderson, L. K., Nankivell, B. J. & Chapman, J. R. Surveillance protocol kidney transplant biopsies: their evolving role in clinical practice. Am. J. Transplant. 11, 1570–1575 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Bloom, R. D. et al. Cell-free DNA and active rejection in kidney allografts. J. Am. Soc. Nephrol. 28, 2221–2232 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Sigdel, T. K. et al. Optimizing detection of kidney transplant injury by assessment of donor-derived cell-free DNA via massively multiplex PCR. J. Clin. Med. 8, E19 (2018).

    Article  Google Scholar 

  26. 26.

    Hricik, D. E. et al. Adverse outcomes of tacrolimus withdrawal in immune–quiescent kidney transplant recipients. J. Am. Soc. Nephrol. 26, 3114–3122 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Curtis, K. A. et al. Isothermal amplification using a chemical heating device for point-of-care detection of HIV-1. PLoS ONE 7, e31432 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Ahn, M.-H., Baek, S.-K., Min, J. & Park, J.-H. A portable electromagnetic induction heating device for point-of-care diagnostics. BioChip J. 10, 208–214 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Parajuli, S. et al. Donor-specific antibodies in the absence of rejection are not a risk factor for allograft failure. Kidney Int. Rep. 4, 1057–1065 (2019).

    Article  Google Scholar 

  30. 30.

    Schinstock, C. A. et al. The value of protocol biopsies to identify patients with de novo donor-specific antibody at high risk for allograft loss. Am. J. Transplant. 17, 1574–1584 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101 (2008).

    CAS  Article  Google Scholar 

Download references


We thank R. Zaffini from viral microbiology (BWH) for helpful discussion about BKV testing and qPCR; the Crimson Core at BWH for providing samples from patients with CMV and BKV; and H. de Puig, N. Angenent-Mari, A. Dy and X. Tan for helpful discussions. M.M.K. was supported by the German Academy of Sciences, Leopoldina (LPDS 2018-01), the Clinician Scientist Program Berta–Ottenstein of the Faculty of Medicine, University of Freiburg, Germany and the Emmy Noether Programme (KA5060/1-1). M.A.A. was supported by a National Science Foundation graduate research fellowship (award no. 1122374). V.K. was supported by the DFG (grant no. 403877094). J.J.C. was supported by MIT’s Center for Microbiome Informatics and Therapeutics, the Paul G. Allen Frontiers Group and the Wyss Institute.

Author information




M.M.K., L.V.R. and J.J.C. designed the study. M.M.K., M.A.A., A.C.H., I.L. and R.G. performed experiments. J.A.V. and M.A.A. programmed the smartphone app, and V.K. contributed to the design and analysis of experiments. L.V.R. and E.A. provided clinical samples. F.M.M. and J.A. advised on the collection and testing of clinical specimens. All authors contributed to the writing of the manuscript and interpretation of data.

Corresponding authors

Correspondence to Leonardo V. Riella or James J. Collins.

Ethics declarations

Competing interests

A patent application related to this work is pending. J.J.C. is co-founder and director of Sherlock Biosciences.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Supplementary Video 1

A smartphone-based software application for the quantification of band intensities.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaminski, M.M., Alcantar, M.A., Lape, I.T. et al. A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection. Nat Biomed Eng 4, 601–609 (2020). https://doi.org/10.1038/s41551-020-0546-5

Download citation

Further reading