Selective imaging of solid tumours via the calcium-dependent high-affinity binding of a cyclic octapeptide to phosphorylated Annexin A2

Abstract

The heterogeneity and continuous genetic adaptation of tumours complicate their detection and treatment via the targeting of genetic mutations. However, hallmarks of cancer such as aberrant protein phosphorylation and calcium-mediated cell signalling provide broadly conserved molecular targets. Here, we show that, for a range of solid tumours, a cyclic octapeptide labelled with a near-infrared dye selectively binds to phosphorylated Annexin A2 (pANXA2), with high affinity at high levels of calcium. Because of cancer-cell-induced pANXA2 expression in tumour-associated stromal cells, the octapeptide preferentially binds to the invasive edges of tumours and then traffics within macrophages to the tumour’s necrotic core. As proof-of-concept applications, we used the octapeptide to detect tumour xenografts and metastatic lesions, and to perform fluorescence-guided surgical tumour resection, in mice. Our findings suggest that high levels of pANXA2 in association with elevated calcium are present in the microenvironment of most solid cancers. The octapeptide might be broadly useful for selective tumour imaging and for delivering drugs to the edges and to the core of solid tumours.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: LS301 structure and cellular uptake.
Fig. 2: Identification of pANXA2 as a molecular target of LS301.
Fig. 3: Intercellular spread of pANXA2 from cancer cells to fibroblasts.
Fig. 4: Expression of pANXA2 in solid-cancer tissues.
Fig. 5: Selective accumulation of LS301 in diverse tumour models.
Fig. 6: Intratumoral distribution of LS301 and colocalization of LS301 with pANXA2 and calcium.
Fig. 7: Intraoperative surgical guidance using the CVG system.

Data availability

All data generated and analysed during the study are available within the paper and its Supplementary Information, with the exception of the code of company-proprietary imaging software.

References

  1. 1.

    Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).

  2. 2.

    Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

  3. 3.

    Krueger, K. E. & Srivastava, S. Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol. Cell. Proteom. 5, 1799–1810 (2006).

  4. 4.

    Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555 (2015).

  5. 5.

    Parker, C. E., Mocanu, V., Mocanu, M., Dicheva, N. & Warren, M. R. in Neuroproteomics (ed. Alzate, O.) (CRC Press/Taylor and Francis, 2010).

  6. 6.

    Zhao, Y. & Jensen, O. N. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 9, 4632–4641 (2009).

  7. 7.

    Olsen, J. V. & Mann, M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol. Cell. Proteom. 12, 3444–3452 (2013).

  8. 8.

    Silva, M. L. Cancer serum biomarkers based on aberrant post-translational modifications of glycoproteins: Clinical value and discovery strategies. Biochim. Biophys. Acta 1856, 165–177 (2015).

  9. 9.

    Diaz-Fernandez, A., Miranda-Castro, R., de-Los-Santos-Alvarez, N. & Lobo-Castanon, M. J. Post-translational modifications in tumor biomarkers: the next challenge for aptamers? Anal. Bioanal. Chem. 410, 2059–2065 (2018).

  10. 10.

    Bharadwaj, A., Bydoun, M., Holloway, R. & Waisman, D. Annexin A2 heterotetramer: structure and function. Int. J. Mol. Sci. 14, 6259–6305 (2013).

  11. 11.

    Lokman, N. A., Ween, M. P., Oehler, M. K. & Ricciardelli, C. The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron. 4, 199–208 (2011).

  12. 12.

    Mohammad, H. S. et al. Annexin A2 expression and phosphorylation are up-regulated in hepatocellular carcinoma. Int. J. Oncol. 33, 1157–1163 (2008).

  13. 13.

    Diaz, V. M., Hurtado, M., Thomson, T. M., Reventos, J. & Paciucci, R. Specific interaction of tissue-type plasminogen activator (t-PA) with annexin II on the membrane of pancreatic cancer cells activates plasminogen and promotes invasion in vitro. Gut 53, 993–1000 (2004).

  14. 14.

    Mai, J., Waisman, D. M. & Sloane, B. F. Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. Biochim. Biophys. Acta 1477, 215–230 (2000).

  15. 15.

    Sharma, M. R., Koltowski, L., Ownbey, R. T., Tuszynski, G. P. & Sharma, M. C. Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp. Mol. Pathol. 81, 146–156 (2006).

  16. 16.

    Shiozawa, Y. et al. Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J. Cell. Biochem. 105, 370–380 (2008).

  17. 17.

    Jaiswal, J. K. et al. S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nat. Commun. 5, 3795 (2014).

  18. 18.

    Deora, A. B., Kreitzer, G., Jacovina, A. T. & Hajjar, K. A. An annexin 2 phosphorylation switch mediates p11-dependent translocation of annexin 2 to the cell surface. J. Biol. Chem. 279, 43411–43418 (2004).

  19. 19.

    Zheng, L. et al. Tyrosine 23 phosphorylation-dependent cell-surface localization of annexin A2 is required for invasion and metastases of pancreatic cancer. PLoS ONE 6, e19390 (2011).

  20. 20.

    de Graauw, M. et al. Annexin A2 phosphorylation mediates cell scattering and branching morphogenesis via cofilin activation. Mol. Cell. Biol. 28, 1029–1040 (2008).

  21. 21.

    Rescher, U., Ludwig, C., Konietzko, V., Kharitonenkov, A. & Gerke, V. Tyrosine phosphorylation of annexin A2 regulates Rho-mediated actin rearrangement and cell adhesion. J. Cell Sci. 121, 2177–2185 (2008).

  22. 22.

    Wang, Y. Q. et al. Tyrosine 23 phosphorylation of Annexin A2 promotes proliferation, invasion, and Stat3 phosphorylation in the nucleus of human breast cancer SK-BR-3 cells. Cancer Biol. Med. 9, 248–253 (2012).

  23. 23.

    Phipps, K. D., Surette, A. P., O’Connell, P. A. & Waisman, D. M. Plasminogen receptor S100A10 is essential for the migration of tumor-promoting macrophages into tumor sites. Cancer Res. 71, 6676–6683 (2011).

  24. 24.

    Achilefu, S. et al. Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression. Proc. Natl Acad. Sci. USA 102, 7976–7981 (2005).

  25. 25.

    Bloch, S. et al. Targeting Beta-3 integrin using a linear hexapeptide labeled with a near-infrared fluorescent molecular probe. Mol. Pharm. 3, 539–549 (2006).

  26. 26.

    Liu, T. et al. Enhancing protein stability with extended disulfide bonds. Proc. Natl Acad. Sci. USA 113, 5910–5915 (2016).

  27. 27.

    Achilefu, S., Dorshow, R. B., Bugaj, J. E. & Rajagopalan, R. Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest. Radiol. 35, 479–485 (2000).

  28. 28.

    Berezin, M. Y. et al. Rational approach to select small peptide molecular probes labeled with fluorescent cyanine dyes for in vivo optical imaging. Biochemistry 50, 2691–2700 (2011).

  29. 29.

    Goiffon, R. J., Akers, W. J., Berezin, M. Y., Lee, H. & Achilefu, S. Dynamic noninvasive monitoring of renal function in vivo by fluorescence lifetime imaging. J. Biomed. Opt. 14, 020501 (2009).

  30. 30.

    Thota, R., Pauff, J. M. & Berlin, J. D. Treatment of metastatic pancreatic adenocarcinoma: a review. Oncology 28, 70–74 (2014).

  31. 31.

    Al-Hajeili, M., Azmi, A. S. & Choi, M. Nab-paclitaxel: potential for the treatment of advanced pancreatic cancer. Onco. Targets Ther. 7, 187–192 (2014).

  32. 32.

    Kratz, F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 132, 171–183 (2008).

  33. 33.

    Valapala, M. & Vishwanatha, J. K. Lipid raft endocytosis and exosomal transport facilitate extracellular trafficking of annexin A2. J. Biol. Chem. 286, 30911–30925 (2011).

  34. 34.

    Lippok, S. et al. Direct detection of antibody concentration and affinity in human serum using microscale thermophoresis. Anal. Chem. 84, 3523–3530 (2012).

  35. 35.

    Wienken, C. J., Baaske, P., Rothbauer, U., Braun, D. & Duhr, S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 1, 100 (2010).

  36. 36.

    Marks, H. L., Pishko, M. V., Jackson, G. W. & Cote, G. L. Rational design of a bisphenol A aptamer selective surface-enhanced Raman scattering nanoprobe. Anal. Chem. 86, 11614–11619 (2014).

  37. 37.

    Jung, Y. S. et al. Src family kinase inhibitor PP2 enhances differentiation of acute promyelocytic leukemia cell line induced by combination of all-trans-retinoic acid and arsenic trioxide. Leuk. Res. 38, 977–982 (2014).

  38. 38.

    Olwill, S. A., McGlynn, H., Gilmore, W. S. & Alexander, H. D. Annexin II cell surface and mRNA expression in human acute myeloid leukaemia cell lines. Thromb. Res. 115, 109–114 (2005).

  39. 39.

    Hajjar, K. A. et al. Tissue plasminogen activator binding to the annexin II tail domain. Direct modulation by homocysteine. J. Biol. Chem. 273, 9987–9993 (1998).

  40. 40.

    Lin, E. Y. et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 163, 2113–2126 (2003).

  41. 41.

    Fantozzi, A. & Christofori, G. Mouse models of breast cancer metastasis. Breast Cancer Res. 8, 212 (2006).

  42. 42.

    Dobrolecki, L. E. et al. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev. 35, 547–573 (2016).

  43. 43.

    Mondal, S. B. et al. Optical see-through cancer vision goggles enable direct patient visualization and real-time fluorescence-guided oncologic surgery. Ann. Surg. Oncol. 24, 1897–1903 (2017).

  44. 44.

    Liu, Y. et al. Hands-free, wireless goggles for near-infrared fluorescence and real-time image-guided surgery. Surgery 149, 689–698 (2011).

  45. 45.

    Kazami, T. et al. Nuclear accumulation of annexin A2 contributes to chromosomal instability by coilin-mediated centromere damage. Oncogene 34, 4177–4189 (2015).

  46. 46.

    LeBleu, V. S. & Kalluri, R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis. Model Mech. 11, 029447 (2018).

  47. 47.

    Hermann, A., Donato, R., Weiger, T. M. & Chazin, W. J. S100 calcium binding proteins and ion channels. Front. Pharmacol. 3, 00067 (2012).

  48. 48.

    Miele, E., Spinelli, G. P., Miele, E., Tomao, F. & Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int. J. Nanomed. 4, 99–105 (2009).

  49. 49.

    Green, M. R. et al. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol. 17, 1263–1268 (2006).

  50. 50.

    Komiya, K. et al. SPARC is a possible predictive marker for albumin-bound paclitaxel in non-small-cell lung cancer. Onco. Targets Ther. 9, 6663–6668 (2016).

  51. 51.

    Frei, E. Albumin binding ligands and albumin conjugate uptake by cancer cells. Diabetol. Metab. Syndr. 3, 11 (2011).

  52. 52.

    Merlot, A. M., Kalinowski, D. S. & Richardson, D. R. Unraveling the mysteries of serum albuminmore than just a serum protein. Front. Physiol. 5, 299 (2014).

  53. 53.

    Vanneman, M. & Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12, 237–251 (2012).

  54. 54.

    Baudino, T. A. Targeted cancer therapy: the next generation of cancer treatment. Curr. Drug Discov. Technol. 12, 3–20 (2015).

  55. 55.

    Ecsedi, P. et al. Regulation of the equilibrium between closed and open conformations of annexin A2 by N-terminal phosphorylation and S100A4-binding. Structure 25, 1195–1207 (2017).

  56. 56.

    Achilefu, S. et al. Synthesis, in vitro receptor binding, and in vivo evaluation of fluorescein and carbocyanine peptide-based optical contrast agents. J. Med. Chem. 45, 2003–2015 (2002).

  57. 57.

    Seidel, S. A. et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59, 301–315 (2013).

  58. 58.

    Garcia-Bonete, M. J. et al. Bayesian analysis of microscale thermophoresis data to quantify affinity of protein:protein interactions with human survivin. Sci. Rep. 7, 16816 (2017).

  59. 59.

    Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay. Drug Dev. Technol. 9, 342–353 (2011).

  60. 60.

    Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 4646–4658 (2003).

Download references

Acknowledgements

This study was supported primarily by a research grant from the National Cancer Institute (no. R01 CA171651) and in part by grants from the National Institutes of Health (nos. U54 CA199092, R01 EB021048, P50 CA094056, P30 CA091842, F30 CA189435, R50CA211481, S10 OD016237, S10 RR031625 and S10 OD020129), the Department of Defense Breast Cancer Research Program (grant no. W81XWH-16-1-0286) and the Alvin J. Siteman Cancer Research Fund (grant no. 11-FY16-01). We thank the Alvin J. Siteman Cancer Center at Washington University School of Medicine, Barnes-Jewish Hospital in St Louis and the Institute of Clinical and Translational Sciences at Washington University in St Louis, for the use of the Tissue Procurement Core which provided tissues from patients with breast cancer. The Siteman Cancer Center is supported in part by an NCI Cancer Center Support grant P30 CA091842 and the Institute of Clinical and Translational Sciences is funded by the National Institutes of Health’s NCATS Clinical and Translational Science Award programme grant UL1 TR002345. We thank Gabriel Birrane for providing the purified ANXA2 and pANXA2 protein reagents used in the initial study.

Author information

S.A. conceived the study and designed LS301; D.S. and B.X. screened and biologically validated LS301; D.S., B.X., R.T. and S.A. designed the research; D.S., B.X., R.T., K.L., G.P.S., C.E., S.-W.D.T., A.Som, R.G., D.M., L.H.-G., W.A., Y.L., S.B., S.M., S.K., Z.N., K.G. and A.Seidel performed the research; S.L. developed the breast cancer PDX model; S.A. supervised the overall study; S.-W.D.T., D.S., B.X., R.T., and S.A. wrote the manuscript. All authors reviewed and edited the manuscript.

Correspondence to Samuel Achilefu.

Ethics declarations

Competing interests

S.A. is a co-inventor on the US patent no. 8,053,415 issued to Washington University covering LS301. The patent may become the subject of a licensing agreement in the future. The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Supplementary Dataset

Proteomic analysis of of the 37 kDa band associated with LS301.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, D., Xu, B., Liang, K. et al. Selective imaging of solid tumours via the calcium-dependent high-affinity binding of a cyclic octapeptide to phosphorylated Annexin A2. Nat Biomed Eng 4, 298–313 (2020). https://doi.org/10.1038/s41551-020-0528-7

Download citation