Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prolonged residence of an albumin–IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis

A Publisher Correction to this article was published on 22 October 2020

This article has been updated


Interleukin-4 (IL-4) suppresses the development of multiple sclerosis in a murine model of experimental autoimmune encephalomyelitis (EAE). Here, we show that, in mice with EAE, the accumulation and persistence in the lymph nodes and spleen of a systemically administered serum albumin (SA)–IL-4 fusion protein leads to higher efficacy in preventing disease development than the administration of wild-type IL-4 or of the clinically approved drug fingolimod. We also show that the SA–IL-4 fusion protein prevents immune-cell infiltration in the spinal cord, decreases integrin expression in antigen-specific CD4+ T cells, increases the number of granulocyte-like myeloid-derived suppressor cells (and their expression of programmed-death-ligand-1) in spinal cord-draining lymph nodes and decreases the number of T helper 17 cells, a pathogenic cell population in EAE. In mice with chronic EAE, SA–IL-4 inhibits immune-cell infiltration into the spinal cord and completely abrogates immune responses to myelin antigen in the spleen. The SA–IL-4 fusion protein may be prophylactically and therapeutically advantageous in the treatment of multiple sclerosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: IL-4 retains activity following fusion to SA.
Fig. 2: Fusion of SA to IL-4 increases the amount of IL-4 in SLOs after i.v. injection.
Fig. 3: SA–IL-4 prevents EAE disease progression and development in the acute phase.
Fig. 4: SA–IL-4 treatment inhibits leukocyte infiltration to the spinal cord and induces immunosuppressive cells in dLNs.
Fig. 5: SA–IL-4 treatment activates the PD-1–PD-L1 axis and decreases integrin and cytokine expression in T cells.
Fig. 6: SA–IL-4 treatment in the chronic phase of EAE decreases the clinical score and prevents immune-cell infiltration to the spinal cord.

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding authors on reasonable request.

Change history

  • 22 October 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Friese, M. A., Schattling, B. & Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 10, 225–238 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Ellwardt, E., Walsh, J. T., Kipnis, J. & Zipp, F. Understanding the role of T cells in CNS homeostasis. Trends Immunol. 37, 154–165 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Hofstetter, H. H. et al. Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell. Immunol. 237, 123–130 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    Chun, J. & Hartung, H. P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol. 33, 91–101 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    Rice, G. P., Hartung, H. P. & Calabresi, P. A. Anti-α4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology 64, 1336–1342 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    Cooney, L. A., Towery, K., Endres, J. & Fox, D. A. Sensitivity and resistance to regulation by IL-4 during Th17 maturation. J. Immunol. 187, 4440–4450 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Gadani, S. P., Cronk, J. C., Norris, G. T. & Kipnis, J. IL-4 in the brain: a cytokine to remember. J. Immunol. 189, 4213–4219 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Racke, M. K. et al. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J. Exp. Med. 180, 1961–1966 (1994).

    CAS  Article  Google Scholar 

  9. 9.

    Butti, E. et al. IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Ther. 15, 504–515 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    Vogelaar, C. F. et al. Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation. Sci. Transl. Med. 10, eaao2304 (2018).

  11. 11.

    van Zwam, M. et al. Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing experimental autoimmune encephalomyelitis. J. Pathol. 217, 543–551 (2009).

    Article  Google Scholar 

  12. 12.

    Dennis, M. S. et al. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. 277, 35035–35043 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    Liao, W. et al. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor α-chain expression. Nat. Immunol. 9, 1288–1296 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    Nilsen, J. et al. Human and mouse albumin bind their respective neonatal Fc receptors differently. Sci. Rep. 8, 14648 (2018).

    Article  Google Scholar 

  15. 15.

    Andersen, J. T. et al. Single-chain variable fragment albumin fusions bind the neonatal Fc receptor (FcRn) in a species-dependent manner: implications for in vivo half-life evaluation of albumin fusion therapeutics. J. Biol. Chem. 288, 24277–24285 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Andrews, R., Rosa, L., Daines, M. & Khurana Hershey, G. Reconstitution of a functional human type II IL-4/IL-13 receptor in mouse B cells: demonstration of species specificity. J. Immunol. 166, 1716–1722 (2001).

    CAS  Article  Google Scholar 

  17. 17.

    Pierson, E. R., Stromnes, I. M. & Goverman, J. M. B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the central nervous system. J. Immunol. 192, 929–939 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Rothhammer, V. et al. Th17 lymphocytes traffic to the central nervous system independently of α4 integrin expression during EAE. J. Exp. Med. 208, 2465–2476 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Sasaki, K. et al. IL-4 suppresses very late antigen-4 expression which is required for therapeutic Th1 T-cell trafficking into tumors. J. Immunother. 32, 793–802 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Ioannou, M. et al. Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J. Immunol. 188, 1136–1146 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Guenova, E. et al. IL-4 abrogates TH17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells. Proc. Natl Acad. Sci. USA 112, 2163–2168 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Lotfi, N. et al. Roles of GM-CSF in the pathogenesis of autoimmune diseases: an update. Front. Immunol. 10, 1265 (2019).

  23. 23.

    Luna, G. et al. Infection risks among patients with multiple sclerosis treated with fingolimod, Natalizumab, Rituximab, and injectable therapies. JAMA Neurol. 77, 184–191 (2019).

  24. 24.

    De Angelis, F., John, N. A. & Brownlee, W. J. Disease-modifying therapies for multiple sclerosis. BMJ 363, k4674 (2018).

    Article  Google Scholar 

  25. 25.

    Comi, G. et al. Efficacy of fingolimod and interferon beta-1b on cognitive, MRI, and clinical outcomes in relapsing-remitting multiple sclerosis: an 18-month, open-label, rater-blinded, randomised, multicentre study (the GOLDEN study). J. Neurol. 264, 2436–2449 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Sanford, M. & Lyseng-Williamson, K. A. Subcutaneous recombinant interferon-β-1a (Rebif®): a review of its use in the treatment of relapsing multiple sclerosis. Drugs 71, 1865–1891 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Barun, B. & Bar-Or, A. Treatment of multiple sclerosis with anti-CD20 antibodies. Clin. Immunol. 142, 31–37 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Taupin, P. Antibodies against CD20 (rituximab) for treating multiple sclerosis: US20100233121. Expert Opin. Ther. Pat. 21, 111–114 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Apolloni, E. et al. Immortalized myeloid suppressor cells trigger apoptosis in antigen-activated T lymphocytes. J. Immunol. 165, 6723–6730 (2000).

    CAS  Article  Google Scholar 

  30. 30.

    Crook, K. R. & Liu, P. Role of myeloid-derived suppressor cells in autoimmune disease. World J. Immunol. 4, 26–33 (2014).

    Article  Google Scholar 

  31. 31.

    Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    Lee, P. W. et al. IL-23R-activated STAT3/STAT4 is essential for Th1/Th17-mediated CNS autoimmunity. JCI Insight 2, e91663 (2017).

    Article  Google Scholar 

  33. 33.

    Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Wang, Y. et al. In vivo albumin labeling and lymphatic imaging. Proc. Natl Acad. Sci. USA 112, 208–213 (2015).

    Article  Google Scholar 

  35. 35.

    Mirzaei, S. et al. Sentinel lymph node detection with large human serum albumin colloid particles in breast cancer. Eur. J. Nucl. Med. Mol. Imaging 30, 874–878 (2003).

    CAS  Article  Google Scholar 

  36. 36.

    Yao, Z., Dai, W., Perry, J., Brechbiel, M. W. & Sung, C. Effect of albumin fusion on the biodistribution of interleukin-2. Cancer Immunol. Immunother. 53, 404–410 (2004).

    CAS  Article  Google Scholar 

  37. 37.

    Fan, Y. Y. et al. Human FcRn tissue expression profile and half-life in PBMCs. Biomolecules 9, 373 (2019).

  38. 38.

    Miyasaka, M. & Tanaka, T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat. Rev. Immunol. 4, 360–370 (2004).

    CAS  Article  Google Scholar 

  39. 39.

    Pyzik, M. et al. Hepatic FcRn regulates albumin homeostasis and susceptibility to liver injury. Proc. Natl Acad. Sci. USA 114, E2862–E2871 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Pyzik, M. et al. The neonatal Fc receptor (FcRn): a misnomer? Front. Immunol. 10, 1540 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    Hashem, L., Swedrowska, M. & Vllasaliu, D. Intestinal uptake and transport of albumin nanoparticles: potential for oral delivery. Nanomedicine 13, 1255–1265 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    Salou, M., Nicol, B., Garcia, A. & Laplaud, D.-A. Involvement of CD8+ T cells in multiple sclerosis. Front. Immunol. 6, 604–604 (2015).

    Article  Google Scholar 

Download references


We thank the Human Tissue Resource Center of the University of Chicago for histological analysis. We thank the Integrated Light microscopy Core facility and Cytometry and Antibody Technology core facility. We thank S. Gomes for experimental support. We thank T. Sano (University of Illinois at Chicago) for experimental advice and helpful discussions. This work was supported by the University of Chicago.

Author information




A.I., J.I. and J.A.H. designed the project. A.I., J.I., E.Y., E.A.W., A.C.T., K.K., M.N., A.S., A.M., E.B., A.T.A., P.H., L.M. and J.W.R. performed the experiments. M.N. and A.S. performed the blinded EAE clinical score measurements. A.I. read the blinded histology. A.I., J.I., E.A.W., A.M., E.B., P.H., M.A.S. and J.A.H. analysed the data. J.I., A.I. and J.A.H. wrote the paper.

Corresponding authors

Correspondence to Jun Ishihara or Jeffrey A. Hubbell.

Ethics declarations

Competing interests

J.I., A.I, K.K., A.M. and J.A.H. are inventors on International Patent application PCT/US20/19668. The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ishihara, A., Ishihara, J., Watkins, E.A. et al. Prolonged residence of an albumin–IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis. Nat Biomed Eng (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing