Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In situ characterization of nanoscale strains in loaded whole joints via synchrotron X-ray tomography

Abstract

Imaging techniques for quantifying changes in the hierarchical structure of deforming joints are constrained by destructive sample treatments, sample-size restrictions and lengthy scan times. Here, we report the use of fast low-dose pink-beam synchrotron X-ray tomography in combination with mechanical loading at nanometric precision for in situ imaging, at resolutions below 100 nm, of the mechanical strain in intact untreated joints under physiologically realistic conditions. We show that in young, older and osteoarthritic mice, hierarchical changes in tissue structure and mechanical behaviour can be simultaneously visualized, and that the tissue structure at the cellular level correlates with the mechanical performance of the whole joint. We also use the tomographic approach to study the colocalization of tissue strains to specific chondrocyte lacunar organizations within intact loaded joints and to explore the role of calcified-cartilage stiffness on the biomechanics of healthy and pathological joints.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Ultra-high-resolution sCT and DVC of intact joints.
Fig. 2: 3D strain mapping of intact tibia.
Fig. 3: Ultra-high-resolution sCT imaging of calcified cartilage.
Fig. 4: Correlative visualization of microstructure, strain patterns and fracture surfaces.
Fig. 5: Nano-resolved strain under physiologically representative loading before and after the onset of osteoarthritis.

Data availability

Representative samples of research data from the experiments and of the data for the figures in the manuscript are provided in the Supplementary Information. The full data, of considerable size, are available from the corresponding authors on reasonable request.

Code availability

The custom DVC code used in this study is available at https://zenodo.org/record/3228175#.XZdBRkZKguE.

References

  1. 1.

    Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Georgiadis, M., Mueller, R. & Schneider, P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J. R. Soc. Interface 13, 20160088 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Pabisch, S., Wagermaier, W., Zander, T., Li, C. & Fratzl, P. in Methods in Enzymology Vol. 532 (ed. De Yoreo, J.) 391–413 (Elsevier, 2013).

  4. 4.

    Zhu, F.-Y. et al. 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotechnology 25, 185705 (2014).

    Article  CAS  Google Scholar 

  5. 5.

    Gupta, H. S. et al. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl Acad. Sci. USA 103, 17741–17746 (2006).

    Article  CAS  Google Scholar 

  6. 6.

    Tadano, S., Giri, B., Sato, T., Fujisaki, K. & Todoh, M. Estimating nanoscale deformation in bone by X-ray diffraction imaging method. J. Biomech. 41, 945–952 (2008).

    Article  Google Scholar 

  7. 7.

    Orgel, J. P., Irving, T. C., Miller, A. & Wess, T. J. Microfibrillar structure of type I collagen in situ. Proc. Natl Acad. Sci. USA 103, 9001–9005 (2006).

    Article  CAS  Google Scholar 

  8. 8.

    Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11, 757–766 (2011).

    Article  CAS  Google Scholar 

  9. 9.

    Dierolf, M. et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 467, 436–439 (2010).

    Article  CAS  Google Scholar 

  10. 10.

    Giannuzzi, L. A., Phifer, D., Giannuzzi, N. J. & Capuano, M. J. Two-dimensional and 3-dimensional analysis of bone/dental implant interfaces with the use of focused ion beam and electron microscopy. J. Oral Maxillofac. Surg. 65, 737–747 (2007).

    Article  Google Scholar 

  11. 11.

    Schneider, P., Meier, M., Wepf, R. & Müller, R. Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuno-canalicular network. Bone 49, 304–311 (2011).

    Article  Google Scholar 

  12. 12.

    Boyde, A. & Jones, S. J. Scanning electron microscopy of bone: instrument, specimen, and issues. Microsc. Res. Tech. 33, 92–120 (1996).

    Article  CAS  Google Scholar 

  13. 13.

    Song, M. J., Dean, D. & Tate, M. L. K. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale. PLoS ONE 5, e12796 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Roeder, B. A., Kokini, K., Robinson, J. P. & Voytik-Harbin, S. L. Local, three-dimensional strain measurements within largely deformed extracellular matrix constructs. J. Biomech. Eng. 126, 699–708 (2004).

    Article  Google Scholar 

  15. 15.

    Sztefek, P. et al. Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia. J. Biomech. 43, 599–605 (2010).

    Article  Google Scholar 

  16. 16.

    Hoc, T. et al. Effect of microstructure on the mechanical properties of Haversian cortical bone. Bone 38, 466–474 (2006).

    Article  CAS  Google Scholar 

  17. 17.

    Bay, B. K. Texture correlation: a method for the measurement of detailed strain distributions within trabecular bone. J. Orthop. Res. 13, 258–267 (1995).

    Article  CAS  Google Scholar 

  18. 18.

    Nicolella, D. P., Moravits, D. E., Gale, A. M., Bonewald, L. F. & Lankford, J. Osteocyte lacunae tissue strain in cortical bone. J. Biomech. 39, 1735–1743 (2006).

    Article  Google Scholar 

  19. 19.

    Katsamenis, O. L., Chong, H. M., Andriotis, O. G. & Thurner, P. J. Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level. J. Mech. Behav. Biomed. Mater. 17, 152–165 (2013).

    Article  CAS  Google Scholar 

  20. 20.

    Tai, K., Dao, M., Suresh, S., Palazoglu, A. & Ortiz, C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat. Mater. 6, 454–462 (2007).

    Article  CAS  Google Scholar 

  21. 21.

    Hassenkam, T. et al. High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35, 4–10 (2004).

    Article  Google Scholar 

  22. 22.

    Thurner, P. J. et al. in Modern Research and Educational Topics in Microscopy (eds Méndez-Vilas, A. D. & Díaz, J.) 37–48 (Formatex, 2007).

  23. 23.

    Pan, B. & Wang, B. A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images. Meas. Sci. Technol. 28, 105007 (2017).

    Article  CAS  Google Scholar 

  24. 24.

    Hussein, A. I., Barbone, P. E. & Morgan, E. F. Digital volume correlation for study of the mechanics of whole bones. Procedia IUTAM 4, 116–125 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Bay, B. K., Smith, T. S., Fyhrie, D. P. & Saad, M. Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp. Mech. 39, 217–226 (1999).

    Article  Google Scholar 

  26. 26.

    Roberts, B. C., Perilli, E. & Reynolds, K. J. Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: a literature review. J. Biomech. 47, 923–934 (2014).

    Article  Google Scholar 

  27. 27.

    Barth, H. D., Launey, M. E., MacDowell, A. A., Ager, J. W. III & Ritchie, R. O. On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone 46, 1475–1485 (2010).

    Article  Google Scholar 

  28. 28.

    Currey, J. D. et al. Effects of ionizing radiation on the mechanical properties of human bone. J. Orthop. Res. 15, 111–117 (1997).

    Article  CAS  Google Scholar 

  29. 29.

    Staines, K. A., Poulet, B., Wentworth, D. N. & Pitsillides, A. A. The STR/ort mouse model of spontaneous osteoarthritis–an update. Osteoarthr. Cartilage 25, 802–808 (2017).

    Article  CAS  Google Scholar 

  30. 30.

    De Fanis, A., Pešić, Z., Wagner, U. & Rau, C. Fast X-ray imaging at beamline I13L at Diamond Light Source. J. Phys. Conf. Ser. 425, 192014 (2013).

    Article  CAS  Google Scholar 

  31. 31.

    Karagadde, S. et al. Transgranular liquation cracking of grains in the semi-solid state. Nat. Commun. 6, 8300 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kareh, K., Lee, P., Atwood, R., Connolley, T. & Gourlay, C. Revealing the micromechanisms behind semi-solid metal deformation with time-resolved X-ray tomography. Nat. Commun. 5, 4464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Bay, B. K. Methods and applications of digital volume correlation. J. Strain Anal. Eng. Des. 43, 745–760 (2008).

    Article  Google Scholar 

  34. 34.

    Goldring, M. B. & Goldring, S. R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N. Y. Acad. Sci. 1192, 230–237 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Lories, R. J. & Luyten, F. P. The bone–cartilage unit in osteoarthritis. Nat. Rev. Rheumatol. 7, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Müller, R. Hierarchical microimaging of bone structure and function. Nat. Rev. Rheumatol. 5, 373–381 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Yamada, S., Tadano, S. & Fujisaki, K. Residual stress distribution in rabbit limb bones. J. Biomech. 44, 1285–1290 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Gupta, H. S. et al. Nanoscale deformation mechanisms in bone. Nano Lett. 5, 2108–2111 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Campbell, S. E., Ferguson, V. L. & Hurley, D. C. Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation. Acta Biomaterialia 8, 4389–4396 (2012).

    Article  CAS  Google Scholar 

  40. 40.

    Mente, P. & Lewis, J. L. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J. Orthop. Res. 12, 637–647 (1994).

    Article  CAS  Google Scholar 

  41. 41.

    Hargrave-Thomas, E., van Sloun, F., Dickinson, M., Broom, N. & Thambyah, A. Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states. Osteoarthr. Cartilage 23, 1755–1762 (2015).

    Article  CAS  Google Scholar 

  42. 42.

    Doube, M., Firth, E. & Boyde, A. Variations in articular calcified cartilage by site and exercise in the 18-month-old equine distal metacarpal condyle. Osteoarthr. Cartilage 15, 1283–1292 (2007).

    Article  CAS  Google Scholar 

  43. 43.

    Day, J. et al. Adaptation of subchondral bone in osteoarthritis. Biorheology 41, 359–368 (2004).

    CAS  PubMed  Google Scholar 

  44. 44.

    Li, B. & Aspden, R. M. Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann. Rheum. Dis. 56, 247–254 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Li, B. & Aspden, R. M. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J. Bone Miner. Res. 12, 641–651 (1997).

    Article  CAS  Google Scholar 

  46. 46.

    Jaiprakash, A. et al. Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis. Int. J. Biol. Sci. 8, 406–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Couchourel, D. et al. Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum. 60, 1438–1450 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Poulet, B. et al. Intermittent applied mechanical loading induces subchondral bone thickening that may be intensified locally by contiguous articular cartilage lesions. Osteoarthr. Cartilage 23, 940–948 (2015).

    Article  CAS  Google Scholar 

  49. 49.

    Van Ruijven, L., Mulder, L. & Van Eijden, T. Variations in mineralization affect the stress and strain distributions in cortical and trabecular bone. J. Biomech. 40, 1211–1218 (2007).

    Article  Google Scholar 

  50. 50.

    Mori, S., Harruff, R. & Burr, D. Microcracks in articular calcified cartilage of human femoral heads. Arch. Pathol. Lab. Med. 117, 196–198 (1993).

    CAS  PubMed  Google Scholar 

  51. 51.

    Pan, J. et al. Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 51, 212–217 (2012).

    Article  Google Scholar 

  52. 52.

    Suri, S. & Walsh, D. A. Osteochondral alterations in osteoarthritis. Bone 51, 204–211 (2012).

    Article  Google Scholar 

  53. 53.

    Pouran, B. et al. Solute transport at the interface of cartilage and subchondral bone plate: effect of micro-architecture. J. Biomech. 52, 148–154 (2017).

    Article  Google Scholar 

  54. 54.

    Muir, P. et al. Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints. Bone 38, 342–349 (2006).

    Article  CAS  Google Scholar 

  55. 55.

    Laverty, S., Lacourt, M., Gao, C., Henderson, J. & Boyde, A. High density infill in cracks and protrusions from the articular calcified cartilage in osteoarthritis in standardbred horse carpal bones. Int. J. Mol. Sci. 16, 9600–9611 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Boyde, A. et al. On fragmenting, densely mineralised acellular protrusions into articular cartilage and their possible role in osteoarthritis. J. Anat. 225, 436–446 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Turley, S. M., Thambyah, A., Riggs, C. M., Firth, E. C. & Broom, N. D. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model. J. Anat. 224, 647–658 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Boyde, A. et al. Cartilage damage involving extrusion of mineralisable matrix from the articular calcified cartilage and subchondral bone. Eur. Cells Mater. 21, 470–478 (2011).

    Article  CAS  Google Scholar 

  59. 59.

    Boyde, A. The real response of bone to exercise. J. Anat. 203, 173–189 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Comhaire, F. H. & Snaps, F. Comparison of two canine registry databases on the prevalence of hip dysplasia by breed and the relationship of dysplasia with body weight and height. Am. J. Vet. Res. 69, 330–333 (2008).

    Article  Google Scholar 

  61. 61.

    Staines, K., Pollard, A., McGonnell, I., Farquharson, C. & Pitsillides, A. Cartilage to bone transitions in health and disease. J. Endocrinol. 219, R1–R12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Staines, K. et al. Endochondral growth defect and deployment of transient chondrocyte behaviors underlie osteoarthritis onset in a natural murine model. Arthritis Rheumatol. 68, 880–891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Pitsillides, A. A. & Beier, F. Cartilage biology in osteoarthritis—lessons from developmental biology. Nat. Rev. Rheumatology 7, 654–663 (2011).

    Article  CAS  Google Scholar 

  64. 64.

    Puncreobutr, C., Lee, P., Hamilton, R. & Phillion, A. Quantitative 3D characterization of solidification structure and defect evolution in Al alloys. JOM 64, 89–95 (2012).

    Article  CAS  Google Scholar 

  65. 65.

    Maksimcuka, J. et al. X-ray tomographic imaging of tensile deformation modes of electrospun biodegradable polyester fibers. Front. Mater. 4, 43 (2017).

    Article  Google Scholar 

  66. 66.

    Poulet, B., Hamilton, R. W., Shefelbine, S. & Pitsillides, A. A. Characterizing a novel and adjustable noninvasive murine joint loading model. Arthritis Rheum. 63, 137–147 (2011).

    Article  Google Scholar 

  67. 67.

    Nazarian, A., Stauber, M., Zurakowski, D., Snyder, B. D. & Müller, R. The interaction of microstructure and volume fraction in predicting failure in cancellous bone. Bone 39, 1196–1202 (2006).

    Article  Google Scholar 

  68. 68.

    Rau, C., Wagner, U., Pešić, Z. & De Fanis, A. Coherent imaging at the Diamond beamline I13. Physica Status Solidi A 208, 2522–2525 (2011).

    Article  CAS  Google Scholar 

  69. 69.

    Pešić, Z., De Fanis, A., Wagner, U. & Rau, C. Experimental stations at I13 beamline at Diamond Light Source. J. Phys. Conf. Ser. 425, 182003 (2013).

    Article  Google Scholar 

  70. 70.

    Christen, D. et al. Deformable image registration and 3D strain mapping for the quantitative assessment of cortical bone microdamage. J. Mech. Behav. Biomed. Mater. 8, 184–193 (2012).

    Article  Google Scholar 

  71. 71.

    Voide, R. et al. Time-lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution. Bone 45, 164–173 (2009).

    Article  CAS  Google Scholar 

  72. 72.

    Pacureanu, A., Langer, M., Boller, E., Tafforeau, P. & Peyrin, F. Nanoscale imaging of the bone cell network with synchrotron X‐ray tomography: optimization of acquisition setup. Med. Phys. 39, 2229–2238 (2012).

    Article  Google Scholar 

  73. 73.

    Basham, M. et al. Data analysis workbench (DAWN). J. Synchrotron Radiat. 22, 853–858 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Titarenko, V. Analytical formula for two-dimensional ring artefact suppression. J. Synchrotron Radiat. 23, 1447–1461 (2016).

    Article  Google Scholar 

  75. 75.

    Madi, K. et al. Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis. Med. Eng. Phys. 35, 1298–1312 (2013).

    Article  CAS  Google Scholar 

  76. 76.

    Abd-Elmoniem, K. Z., Stuber, M. & Prince, J. L. Direct three-dimensional myocardial strain tensor quantification and tracking using zHARP. Med. Image Anal. 12, 778–786 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    De Souza, R. L. et al. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone 37, 810–818 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Mason (Imperial College London) for providing our original STR/Ort mice and for advice on their use. We thank L. Courtois, S. V. Boxel, C. Disney, G. Poologasundarampillai, J. He, D. Eastwood, K. Wanelik, U. Wagner and J. Thompson for their help during the beamtimes. We acknowledge the Engineering and Physical Sciences Research Council (grants EP/I02249X/1 and EP/M009688/1), Arthritis Research UK (grant 18768) and the MRC (grant MR/R025673/1). Facilities and research support were provided by the Diamond-Manchester Branchline (I13-2) at Diamond Light Source (Beamtimes MT13237-1, MT11076-1 and MT5003-1) and the Research Complex at Harwell.

Author information

Affiliations

Authors

Contributions

Conception and design of the study: P.D.L., A.A.P., K.M., K.A.S. and B.K.B. Acquisition of data: K.M., B.K.B., H.G., B.J., K.A.S. and A.J.B. Interpretation of data, revision of the manuscript, final approval and agreement to be accountable for all aspects of the work: all authors. Drafting of the manuscript: K.A.S., K.M., B.K.B., A.A.P. and P.D.L.

Corresponding authors

Correspondence to Brian K. Bay or Andrew A. Pitsillides or Peter D. Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures, Supplementary Tables and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madi, K., Staines, K.A., Bay, B.K. et al. In situ characterization of nanoscale strains in loaded whole joints via synchrotron X-ray tomography. Nat Biomed Eng 4, 343–354 (2020). https://doi.org/10.1038/s41551-019-0477-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing