The detection and analysis of rare blood biomarkers is necessary for early diagnosis of cancer and to facilitate the development of tailored therapies. However, current methods for the isolation of circulating tumour cells (CTCs) or nucleic acids present in a standard clinical sample of only 5–10 ml of blood provide inadequate yields for early cancer detection and comprehensive molecular profiling. Here, we report the development of a flexible magnetic wire that can retrieve rare biomarkers from the subject’s blood in vivo at a much higher yield. The wire is inserted and removed through a standard intravenous catheter and captures biomarkers that have been previously labelled with injected magnetic particles. In a proof-of-concept experiment in a live porcine model, we demonstrate the in vivo labelling and single-pass capture of viable model CTCs in less than 10 s. The wire achieves capture efficiencies that correspond to enrichments of 10–80 times the amount of CTCs in a 5-ml blood draw, and 500–5,000 times the enrichments achieved using the commercially available Gilupi CellCollector.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Yu, M., Stott, S., Toner, M., Maheswaran, S. & Haber, D. A. Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192, 373–382 (2011).

  2. 2.

    Coumans, F. A. W., Ligthart, S. T., Uhr, J. W. & Terstappen, L. W. M. M. Challenges in the enumeration and phenotyping of CTC. Clin. Cancer Res. 18, 5711–5718 (2012).

  3. 3.

    Alix-Panabières, C. & Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 14, 623–631 (2014).

  4. 4.

    Yu, M. et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345, 216–220 (2014).

  5. 5.

    Cayrefourcq, L. et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 75, 892–901 (2015).

  6. 6.

    Stoecklein, N. H., Fischer, J. C., Niederacher, D. & Terstappen, L. W. M. M. Challenges for CTC-based liquid biopsies: low CTC frequency and diagnostic leukapheresis as a potential solution. Expert Rev. Mol. Diagn. 16, 147–164 (2016).

  7. 7.

    Adams, J. D., Kim, U. & Soh, H. T. Multitarget magnetic activated cell sorter. Proc. Natl Acad. Sci. USA 105, 18165–18170 (2008).

  8. 8.

    Earhart, C. M. et al. Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips. Lab Chip 14, 78–88 (2014).

  9. 9.

    Kang, J. H. et al. A combined micromagnetic–microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 12, 2175 (2012).

  10. 10.

    Pamme, N. Continuous flow separations in microfluidic devices. Lab Chip 7, 1644 (2007).

  11. 11.

    Inglis, D. W., Riehn, R., Sturm, J. C. & Austin, R. H. Microfluidic high gradient magnetic cell separation. J. Appl. Phys. 99, 08K101 (2006).

  12. 12.

    Stott, S. L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107, 18392–18397 (2010).

  13. 13.

    Ozkumur, E. et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl Med. 5, 179ra47 (2013).

  14. 14.

    Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

  15. 15.

    Che, J. et al. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology. Oncotarget 7, 12748–12760 (2016).

  16. 16.

    Chung, J. et al. Rare cell isolation and profiling on a hybrid magnetic/size-sorting chip. Biomicrofluidics 7, 54107 (2013).

  17. 17.

    Hou, S. et al. Capture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructures. Adv. Mater. 25, 1547–1551 (2013).

  18. 18.

    Fischer, J. C. et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc. Natl Acad. Sci. USA 110, 16580–16585 (2013).

  19. 19.

    Herrmann, I. K. et al. Device for continuous extracorporeal blood purification using target-specific metal nanomagnets. Nephrol. Dial. Transplant. 26, 2948–2954 (2011).

  20. 20.

    Saucedo-Zeni, N. et al. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int. J. Oncol. 41, 1241–1250 (2012).

  21. 21.

    Laurent, S., Saei, A. A., Behzadi, S., Panahifar, A. & Mahmoudi, M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin. Drug Deliv. 11, 1449–1470 (2014).

  22. 22.

    Fu, A. et al. Fluorescent magnetic nanoparticles for magnetically enhanced cancer imaging and targeting in living subjects. ACS Nano 6, 6862–6869 (2012).

  23. 23.

    Yellen, B. B. et al. Targeted drug delivery to magnetic implants for therapeutic applications. J. Magn. Magn. Mater. 293, 647–654 (2005).

  24. 24.

    Polyak, B. et al. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc. Natl Acad. Sci. USA 105, 698–703 (2008).

  25. 25.

    Xia, N. et al. Combined microfluidic–micromagnetic separation of living cells in continuous flow. Biomed. Micro. 8, 299–308 (2006).

  26. 26.

    Yavuz, C. T. et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314, 964–967 (2006).

  27. 27.

    Spivack, D. E., Kelly, P., Gaughan, J. P. & van Bemmelen, P. S. Mapping of superficial extremity veins: normal diameters and trends in a vascular patient-population. Ultrasound Med. Biol. 38, 190–194 (2012).

  28. 28.

    Thiriet, M. Biology and Mechanics of Blood Flows. CRM Series in Mathematical Physics (Springer, New York, 2008).

  29. 29.

    Aktas, B. et al. Stem cell and epithelial–mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 11, R46 (2009).

  30. 30.

    Zborowski, M. in Laboratory Techniques in Biochemistry and Molecular Biology Vol. 32, 29–61 (Elsevier, 2007).

  31. 31.

    Paterlini-Brechot, P. & Benali, N. L. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 253, 180–204 (2007).

  32. 32.

    Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7, 169–181 (2007).

  33. 33.

    Litwin, M. S. & Chapman, K. Physical factors affecting human blood viscosity. J. Surg. Res. 10, 433–436 (1970).

  34. 34.

    Armstrong, A. J. et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol. Cancer Res. 9, 997–1007 (2011).

  35. 35.

    Liu, Y. et al. Circulating tumor cells in HER2-positive metastatic breast cancer patients: a valuable prognostic and predictive biomarker. BMC Cancer 13, 202 (2013).

  36. 36.

    Meng, S. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004).

  37. 37.

    Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

  38. 38.

    Dorsey, J. F. et al. Tracking viable circulating tumor cells (CTCs) in the peripheral blood of non-small cell lung cancer (NSCLC) patients undergoing definitive radiation therapy: pilot study results. Cancer 121, 139–149 (2015).

  39. 39.

    Jain, T. K., Reddy, M. K., Morales, M. A., Leslie-Pelecky, D. L. & Labhasetwar, V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 5, 316–327 (2008).

  40. 40.

    Tate, J. A., Petryk, A. A., Giustini, A. J. & Hoopes, P. J. In vivo biodistribution of iron oxide nanoparticles: an overview. Proc. SPIE Int. Soc. Opt. Eng. 7901, 790117 (2011).

  41. 41.

    Arami, H., Khandhar, A., Liggitt, D. & Krishnan, K. M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44, 8576–8607 (2015).

  42. 42.

    Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

  43. 43.

    Coumans, F. & Terstappen, L. in Whole Genome Amplification. Methods and Protocols Vol. 1347 (ed. Kroneis, T.) 263–278 (Humana Press, 2015).

  44. 44.

    Talasaz, A. H. et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc. Natl Acad. Sci. USA 106, 3970–3975 (2009).

  45. 45.

    Galanzha, E. I. et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4, 855–860 (2009).

  46. 46.

    Fonnum, G., Johansson, C., Molteberg, A., Mørup, S. & Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47 (2005).

  47. 47.

    Vermesh, O. et al. Dataset for ‘An intravascular magnetic wire for the high-throughput retrieval of circulating tumour cells in vivo’. figshare https://doi.org/10.6084/m9.figshare.6272414 (2018).

  48. 48.

    Diaz, L. A. & Bardelli, A. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 32, 579–586 (2014).

Download references


We thank D. Sze, A. Thakor, M. Mahmoudi, H. Nejadnik, T. Larson, A. de Souza and H. Tom Soh for discussions. We also thank Pork Power Farms for their help in choosing suitable pigs for the study. We would also like to acknowledge the Veterinary Service Center and Animal Diagnostic Laboratory at Stanford. This research was supported by the US National Institutes of Health (NIH) Awards U54CA151459 (Center for Cancer Nanotechnology Excellence and Translation) and R21CA185804 (to S.S.G. and S.X.W.), the Canary Foundation (to S.S.G.), and the Ben and Catherine Ivy Foundation. The authors also acknowledge funding support from the NIH Shared Instrument Grant S10 RR026714.

Author information

Author notes

  1. These authors contributed equally: Ophir Vermesh, Amin Aalipour, T. Jessie Ge.


  1. Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA

    • Ophir Vermesh
    • , Amin Aalipour
    • , T. Jessie Ge
    • , Israt S. Alam
    • , Seung-min Park
    • , Hamed Arami
    •  & Sanjiv S. Gambhir
  2. Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA

    • Ophir Vermesh
    • , Amin Aalipour
    • , T. Jessie Ge
    • , Yamil Saenz
    • , Israt S. Alam
    • , Seung-min Park
    • , Michael H. Bachmann
    • , Kerstin Mueller
    • , Hamed Arami
    •  & Sanjiv S. Gambhir
  3. Department of Bioengineering, Stanford University, Stanford, CA, USA

    • Amin Aalipour
  4. Howard Hughes Medical Institute, Chevy Chase, MD, USA

    • T. Jessie Ge
  5. Department of Electrical Engineering, Stanford University, Stanford, CA, USA

    • Yue Guo
    •  & Shan X. Wang
  6. Department of Chemistry, Stanford University, Stanford, CA, USA

    • Charlie N. Adelson
    • , Jennifer K. Lyons
    •  & Edward I. Solomon
  7. Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA

    • Yoshiaki Mitsutake
    •  & Alfredo Green
  8. Department of Comparative Medicine, Stanford University, Stanford, CA, USA

    • Jose Vilches-Moure
    •  & Elias Godoy
  9. Department of Pediatrics, Stanford University, Stanford, CA, USA

    • Michael H. Bachmann
  10. Department of Chemical Engineering, Stanford University, Stanford, CA, USA

    • Chin Chun Ooi
  11. Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA

    • Shan X. Wang


  1. Search for Ophir Vermesh in:

  2. Search for Amin Aalipour in:

  3. Search for T. Jessie Ge in:

  4. Search for Yamil Saenz in:

  5. Search for Yue Guo in:

  6. Search for Israt S. Alam in:

  7. Search for Seung-min Park in:

  8. Search for Charlie N. Adelson in:

  9. Search for Yoshiaki Mitsutake in:

  10. Search for Jose Vilches-Moure in:

  11. Search for Elias Godoy in:

  12. Search for Michael H. Bachmann in:

  13. Search for Chin Chun Ooi in:

  14. Search for Jennifer K. Lyons in:

  15. Search for Kerstin Mueller in:

  16. Search for Hamed Arami in:

  17. Search for Alfredo Green in:

  18. Search for Edward I. Solomon in:

  19. Search for Shan X. Wang in:

  20. Search for Sanjiv S. Gambhir in:


O.V., A.A., T.J.G. and S.S.G conceived and designed the research. O.V., A.A. and T.J.G. performed all experiments. O.V., A.A., T.J.G., S.-m.P., C.N.A., E.I.S., S.X.W. and S.S.G analysed the data. T.J.G. and Y.G. performed the computational modelling. Y.M., Y.S., J.K.L, A.G. and K.M. aided with the porcine model. O.V., I.S.A., C.N.A., J.V.-M., E.G. and E.I.S. conducted and analysed the toxicity, biodistribution and pharmacokinetic studies. C.C.O. and H.A. aided with MP characterization. M.H.B. contributed cell culture expertise and reagents. O.V., A.A., T.J.G., S.-m.P. and S.S.G drafted the manuscript with input from all of the authors.

Competing interests

O.V., A.A., T.J.G., S.-m.P, and S.S.G. have filed for patent protection for the MagWIRE technology. The remaining authors declare no competing interests.

Corresponding author

Correspondence to Sanjiv S. Gambhir.

Supplementary information

  1. Supplementary Information

    Supplementary figures, tables and video captions.

  2. Reporting Summary

  3. Supplementary Video 1

    Trajectories and distribution of magnetic particles along the MagWIRE.

  4. Supplementary Video 2

    Magnetic particle accumulation on MagWIRE.

  5. Supplementary Video 3

    Single-pass method of rapid cell labelling and capture.

  6. Supplementary Video 4

    Fluoroscopy of the highly vascularized porcine ear.

  7. Supplementary Video 5

    Fluoroscopy of the MagWIRE in a porcine ear vein.

About this article

Publication history