Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging

Abstract

Quantitative cardiovascular magnetic resonance (CMR) imaging can be used to characterize fibrosis, oedema, ischaemia, inflammation and other disease conditions. However, the need to reduce artefacts arising from body motion through a combination of electrocardiography (ECG) control, respiration control and contrast-weighting selection makes CMR exams lengthy. Here, we show that physiological motions and other dynamic processes can be conceptualized as multiple time dimensions that can be resolved via low-rank tensor imaging, allowing for motion-resolved quantitative imaging with up to four time dimensions. This continuous-acquisition approach, which we name CMR multitasking, captures—rather than avoids—motion, relaxation and other dynamics to efficiently perform quantitative CMR without the use of ECG triggering or breath holds. We demonstrate that CMR multitasking allows for T1 mapping, T1/T2 mapping and time-resolved T1 mapping of myocardial perfusion without ECG information and/or under free-breathing conditions. CMR multitasking may provide a foundation for the development of setup-free CMR imaging for the quantitative evaluation of cardiovascular health.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration and analysis of multiple time dimensions for non-ECG, free-breathing native myocardial T1 mapping.
Fig. 2: CMR multitasking for non-ECG, free-breathing native myocardial T1 mapping.
Fig. 3: Comparison of T1 values in vials placed along a subject’s chest.
Fig. 4: CMR multitasking for non-ECG, free-breathing joint T1/T2 mapping in the myocardium.
Fig. 5: Native myocardial T1/T2 mapping results in ten patients with acute myocardial infarction.
Fig. 6: Example additional measurements available from T2IR-FLASH CMR multitasking.
Fig. 7: CMR multitasking for non-ECG, first-pass myocardial perfusion T1 mapping.

References

  1. 1.

    Moon, J. C. et al. Myocardial T 1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J. Cardiovasc. Magn. Reson. 15, 92 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Giri, S. et al. T 2 quantification for improved detection of myocardial edema. J. Cardiovasc. Magn. Reson. 11, 56 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Atkinson, D., Burstein, D. & Edelman, R. First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 174, 757–762 (1990).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Christian, T. F. et al. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 232, 677–684 (2004).

    Article  PubMed  Google Scholar 

  5. 5.

    Lustig, M., Donoho, D. & Pauly, J. M. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007).

    Article  PubMed  Google Scholar 

  6. 6.

    Ma, D. et al. Magnetic resonance fingerprinting. Nature 495, 187–192 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kolda, T. G. & Bader, B. W. Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009).

    Article  Google Scholar 

  8. 8.

    Hamilton, J. I. et al. MR fingerprinting for rapid quantification of myocardial T 1, T 2, and proton spin density. Magn. Reson. Med. 77, 1446–1458 (2017).

    Article  PubMed  Google Scholar 

  9. 9.

    Feng, L. et al. XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn. Reson. Med. 75, 775–788 (2016).

    Article  PubMed  Google Scholar 

  10. 10.

    Liang, Z.-P. Spatiotemporal imaging with partially separable functions. In Proc. 4th IEEE Int. Symp. Biomed. Imaging 988–991 (IEEE, 2007).

  11. 11.

    Pedersen, H., Kozerke, S., Ringgaard, S., Nehrke, K. & Kim, W. Y. k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. Magn. Reson Med 62, 706–716 (2009).

    Article  PubMed  Google Scholar 

  12. 12.

    Huang, C., Graff, C. G., Clarkson, E. W., Bilgin, A. & Altbach, M. I. T 2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing. Magn. Reson. Med. 67, 1355–1366 (2012).

    Article  PubMed  Google Scholar 

  13. 13.

    Lam, F. & Liang, Z.-P. A subspace approach to high-resolution spectroscopic imaging. Magn. Reson. Med. 71, 1349–1357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Fu, M. et al. High-resolution dynamic speech imaging with joint low-rank and sparsity constraints. Magn. Reson. Med. 73, 1820–1832 (2015).

    Article  PubMed  Google Scholar 

  15. 15.

    Zhao, B. et al. Accelerated MR parameter mapping with low-rank and sparsity constraints. Magn. Reson. Med. 74, 489–498 (2015).

    Article  PubMed  Google Scholar 

  16. 16.

    Tamir, J. I. et al. T 2 shuffling: sharp, multicontrast, volumetric fast spin-echo imaging. Magn. Reson. Med. 77, 180–195 (2017).

    Article  PubMed  Google Scholar 

  17. 17.

    Trzasko, J. D. & Manduca, A. A unified tensor regression framework for calibrationless dynamic, multi-channel MRI reconstruction. In Proc. ISMRM 21st Annual Meeting and Exhibition 603 (ISMRM, 2013).

  18. 18.

    Yu, Y., Jin, J., Liu, F. & Crozier, S. Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform. PLoS ONE 9, e98441 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Christodoulou, A. G. & Liang, Z.-P. 3D dynamic T 1 mapping of the myocardium using a time-varying subspace. In Proc. ISMRM 23rd Annual Meeting and Exhibition 2614 (ISMRM, 2015).

  20. 20.

    Christodoulou, A. G. et al. Fast dynamic electron paramagnetic resonance (EPR) oxygen imaging using low-rank tensors. J. Magn. Reson. 270, 176–182 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    He, J. et al. Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors. IEEE Trans. Med. Imaging 35, 2119–2129 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Ma, C. et al. High-resolution dynamic 31P-MRSI using a low-rank tensor model. Magn. Reson. Med. 78, 419–428 (2017).

    Article  PubMed  Google Scholar 

  23. 23.

    Ferreira, V. M., Piechnik, S. K., Robson, M. D., Neubauer, S. & Karamitsos, T. D. Myocardial tissue characterization by magnetic resonance imaging: novel applications of T 1 and T 2 mapping. J. Thorac. Imaging 29, 147–154 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Messroghli, D. R. et al. Modified look-locker inversion recovery (MOLLI) for high-resolution T 1 mapping of the heart. Magn. Reson. Med. 52, 141–146 (2004).

    Article  PubMed  Google Scholar 

  25. 25.

    Piechnik, S. K. et al. Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T 1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J. Cardiovasc. Magn. Reson. 12, 69 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Weingärtner, S. et al. Heart-rate independent myocardial T 1-mapping using combined saturation and inversion preparation pulses. J. Cardiovasc. Magn. Reson. 15, P46 (2013).

    Article  PubMed Central  Google Scholar 

  27. 27.

    Chow, K. et al. Saturation recovery single-shot acquisition (SASHA) for myocardial T 1 mapping. Magn. Reson. Med. 71, 2082–2095 (2014).

    Article  PubMed  Google Scholar 

  28. 28.

    Xue, H. et al. Phase-sensitive inversion recovery for myocardial T 1 mapping with motion correction and parametric fitting. Magn. Reson. Med. 69, 1408–1420 (2013).

    Article  PubMed  Google Scholar 

  29. 29.

    Von Knobelsdorff-Brenkenhoff, F. et al. Myocardial T 1 and T 2 mapping at 3 T: reference values, influencing factors and implications. J. Cardiovasc. Magn. Reson. 15, 53 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kellman, P. & Hansen, M. S. T 1-mapping in the heart: accuracy and precision. J. Cardiovasc. Magn. Reson. 16, 2 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Roujol, S. et al. Accuracy, precision, and reproducibility of four T 1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology 272, 683–689 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kellman, P., Chung, Y.-C., Simonetti, O. P., McVeigh, E. R. & Arai, A. E. Multicontrast delayed enhancement provides improved contrast between myocardial infarction and blood pool. J. Magn. Reson. Imaging 22, 605–613 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Blume, U. et al. Interleaved T 1 and T 2 relaxation time mapping for cardiac applications. J. Magn. Reson. Imaging 29, 480–487 (2009).

    Article  PubMed  Google Scholar 

  34. 34.

    Kvernby, S. et al. Simultaneous three-dimensional myocardial T 1 and T 2 mapping in one breath hold with 3D-QALAS. J. Cardiovasc. Magn. Reson. 16, 102 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Akçakaya, M. et al. Joint myocardial T 1 and T 2 mapping using a combination of saturation recovery and T 2-preparation. Magn. Reson. Med. 76, 888–896 (2016).

    Article  PubMed  Google Scholar 

  36. 36.

    DiBella, E. V., Chen, L., Schabel, M. C., Adluru, G. & McGann, C. J. Myocardial perfusion acquisition without magnetization preparation or gating. Magn. Reson. Med. 67, 609–613 (2012).

    Article  PubMed  Google Scholar 

  37. 37.

    Sharif, B. et al. Non-ECG-gated myocardial perfusion MRI using continuous magnetization-driven radial sampling. Magn. Reson. Med. 72, 1620–1628 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Jerosch-Herold, M., Wilke, N., Stillman, A. E. & Wilson, R. F. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med. Phys. 25, 73–84 (1998).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Chen, D. et al. Quantification of myocardial blood flow using non-ECG-triggered MR imaging. Magn. Reson. Med. 74, 765–771 (2015).

    Article  PubMed  Google Scholar 

  40. 40.

    Muehling, O. M. et al. Regional heterogeneity of myocardial perfusion in healthy human myocardium: assessment with magnetic resonance perfusion imaging. J. Cardiovasc. Magn. Reson. 6, 499–507 (2004).

    Article  PubMed  Google Scholar 

  41. 41.

    Lee, J.-H., Li, X., Sammi, M. K. & Springer, C. S. Using flow relaxography to elucidate flow relaxivity. J. Magn. Reson. 136, 102–113 (1999).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Likhite, D. et al. Interstudy repeatability of self-gated quantitative myocardial perfusion MRI. J. Magn. Reson. Imaging 43, 1369–1378 (2016).

    Article  PubMed  Google Scholar 

  43. 43.

    Tucker, L. R. Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Liu, J., Musialski, P., Wonka, P. & Ye, J. Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 208–220 (2013).

    Article  PubMed  Google Scholar 

  45. 45.

    Larson, A. C. et al. Self-gated cardiac cine MRI. Magn. Reson. Med. 51, 93–102 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Candès, E. J. & Tao, T. The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Info. Theory 56, 2053–2080 (2010).

    Article  Google Scholar 

  47. 47.

    De Lathauwer, L., De Moor, B. & Vandewalle, J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000).

    Article  Google Scholar 

  48. 48.

    Nezafat, R. et al. B 1-insensitive T 2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn. Reson. Med. 55, 858–864 (2006).

    Article  PubMed  Google Scholar 

  49. 49.

    Staewen, R. S. et al. 3-D FLASH imaging using a single surface coil and a new adiabatic pulse, BIR-4. Invest. Radiol. 25, 559–567 (1990).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Brown, R. et al. Effect of blood flow on double inversion recovery vessel wall MRI of the peripheral arteries: quantitation with T 2 mapping and comparison with flow-insensitive T 2-prepared inversion recovery imaging. Magn. Reson. Med. 63, 736–744 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Pintaske, J. et al. Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest. Radiol. 41, 213–221 (2006).

    Article  PubMed  Google Scholar 

  52. 52.

    Shen, Y. et al. T 1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 T. Invest. Radiol. 50, 330–338 (2015).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH 1R01HL124649 and NIH T32HL116273.

Author information

Affiliations

Authors

Contributions

A.G.C. conceived the imaging framework, wrote the reconstruction and parameter-fitting software, programmed the pulse-sequence sampling scheme, performed the analysis and prepared most of the manuscript. A.G.C., J.L.S. and D.L. designed the native T1 mapping and first-pass myocardial perfusion T1 mapping method and experiments, which were conducted by J.L.S. and A.G.C. C.N. designed the T2IR preparation pulse and programmed it into the pulse sequence. A.G.C., Y.X., N.W., C.N., J.L.S. and D.L. designed the T1/T2 mapping method and healthy volunteer experiments, which were conducted by A.G.C., J.L.S. and C.N. A.G.C., Q.Y. and D.L. designed the patient T1/T2 mapping experiments, which were conducted by Q.Y. J.L.S performed the myocardial T1 reconstructions. A.G.C. performed the T1/T2 and first-pass myocardial perfusion T1 mapping reconstructions. All authors reviewed and edited the manuscript. D.L. supervised the work.

Corresponding author

Correspondence to Debiao Li.

Ethics declarations

Competing interests

D.L., A.G.C., J.L.S., Y.X. and C.N. have a provisional patent application entitled ‘Low-rank tensor imaging for multidimensional cardiovascular MRI’ (USSN 15/495,588).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables, notes, methods and references.

Reporting Summary

Supplementary Video 1

Multitasking image with three time dimensions: inversion time, cardiac phase and respiratory phase.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christodoulou, A.G., Shaw, J.L., Nguyen, C. et al. Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging. Nat Biomed Eng 2, 215–226 (2018). https://doi.org/10.1038/s41551-018-0217-y

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing