Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cross-circulation for extracorporeal support and recovery of the lung

Abstract

The shortage of transplantable donor organs has profound consequences, especially for patients with end-stage lung disease, for which transplantation remains the only definitive treatment. Although advances in ex vivo lung perfusion have enabled the evaluation and reconditioning of marginally unacceptable donor lungs, clinical use of the technique is limited to ~6 h. Extending the duration of extracorporeal organ support from hours to days would enable longer recovery and recipient-specific manipulations of the donor lung, with the goal of expanding the donor organ pool and improving long-term outcomes. By using a clinically relevant swine model, here we report the development of a cross-circulation platform wherein recipient support enabled 36 h of normothermic perfusion that maintained healthy lungs and allowed for the recovery of injured lungs. Extended support enabled multiscale therapeutic interventions in all extracorporeal lungs. Lungs exceeded transplantation criteria, and recipients tolerated cross-circulation with no significant changes in physiologic parameters throughout 36 h of support. Our findings suggest that cross-circulation should enable extended support and interventions in extracorporeal organs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental procedure and extracorporeal lung maintenance strategy.
Figure 2: Management of pulmonary venous drainage and utilization of donor vessel as a bio-bridge.
Figure 3: Recipient safety and stability throughout 36 h of cross-circulation support.
Figure 4: Extracorporeal lung stability and performance during prolonged maintenance and ischaemic recovery.
Figure 5: Analysis of extracorporeal lungs in prolonged maintenance group.
Figure 6: Extracorporeal recovery and maintenance of injured lungs.
Figure 7: Demonstration of multiscale interventions in extracorporeal lungs.

References

  1. Rabe, K. F. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 176, 532–555 (2007).

    Article  Google Scholar 

  2. Kochanek, K. D., Murphy, S. L., Xu, J. & Arias, E. Mortality in the United States, 2013. NCHS Data Brief 178, 1–8 (2014).

    Google Scholar 

  3. Valapour, M. et al. OPTN/SRTR 2013 annual data report: lung. Am. J. Transplant. 15, 1–28 (2015).

    Article  Google Scholar 

  4. Ware, L. B. et al. Assessment of lungs rejected for transplantation and implications for donor selection. Lancet 360, 619–620 (2002).

    Article  Google Scholar 

  5. Pomfret, E. et al. Solving the organ shortage crisis: the 7th annual American Society of Transplant Surgeons’ State-of-the-Art Winter Symposium. Am. J. Transplant. 8, 745–752 (2008).

    Article  CAS  Google Scholar 

  6. Klein, A. et al. Organ donation and utilization in the United States, 1999–2008. Am. J. Transplant. 10, 973–986 (2010).

    Article  CAS  Google Scholar 

  7. Javidfar, J. & Bacchetta, M. Bridge to lung transplantation with extracorporeal membrane oxygenation support. Curr. Opin. Org. Transplant. 17, 496–502 (2012).

    Article  CAS  Google Scholar 

  8. Fuehner, T. et al. Extracorporeal membrane oxygenation in awake patients as bridge to lung transplantation. Am. J. Respir. Crit. Care Med. 185, 763–768 (2012).

    Article  Google Scholar 

  9. Bittle, G. J. et al. The use of lung donors older than 55 years: a review of the United Network of Organ Sharing database. J. Heart Lung Transplant. 32, 760–768 (2013).

    Article  Google Scholar 

  10. Van Raemdonck, D. et al. Lung donor selection and management. Proc. Am. Thorac. Soc. 6, 28–38 (2009).

    Article  Google Scholar 

  11. Elgharably, H., Shafii, A. E. & Mason, D. P. Expanding the donor pool: donation after cardiac death. Thorac. Surg. Clin. 25, 35–46 (2015).

    Article  Google Scholar 

  12. Cypel, M. & Keshavjee, S. Extending the donor pool: rehabilitation of poor organs. Thorac. Surg. Clin. 25, 27–33 (2015).

    Article  Google Scholar 

  13. Rosen, C. et al. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice. Nat. Med. 21, 869–879 (2015).

    Article  CAS  Google Scholar 

  14. Wagner, D. E. et al. Can stem cells be used to generate new lungs? Ex vivo lung bioengineering with decellularized whole lung scaffolds. Respirology 18, 895–911 (2013).

    Article  Google Scholar 

  15. Petersen, T. H. et al. Tissue-engineered lungs for in vivo implantation. Science 329, 538–541 (2010).

    Article  CAS  Google Scholar 

  16. Ott, H. C. et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16, 927–933 (2010).

    Article  CAS  Google Scholar 

  17. Wobma, H. & Vunjak-Novakovic, G. Tissue engineering and regenerative medicine 2015: a year in review. Tissue Eng. Part B Rev. 22, 101–113 (2016).

    Article  Google Scholar 

  18. Cooper, D. K. et al. Clinical lung xenotransplantation—what donor genetic modifications may be necessary? Xenotransplantation 19, 144–158 (2012).

    Article  Google Scholar 

  19. Laird, C., Burdorf, L. & Pierson, R. N. III Lung xenotransplantation: a review. Curr. Opin. Org. Transplant. 21, 272–278 (2016).

    Article  CAS  Google Scholar 

  20. Popov, A.-F. et al. Ex vivo lung perfusion–state of the art in lung donor pool expansion. Med. Sci. Monit. Basic Res. 21, 9–14 (2015).

    Article  Google Scholar 

  21. Mohite, P. et al. Utilization of the Organ Care System Lung for the assessment of lungs from a donor after cardiac death (DCD) before bilateral transplantation. Perfusion 30, 427–430 (2015).

    Article  CAS  Google Scholar 

  22. Cypel, M. et al. Normothermic ex vivo lung perfusion in clinical lung transplantation. N. Engl. J. Med. 364, 1431–1440 (2011).

    Article  CAS  Google Scholar 

  23. Zych, B. et al. Early outcomes of bilateral sequential single lung transplantation after ex-vivo lung evaluation and reconditioning. J. Heart Lung Transplant. 31, 274–281 (2012).

    Article  Google Scholar 

  24. Wallinder, A. et al. Transplantation of initially rejected donor lungs after ex vivo lung perfusion. J. Thorac. Cardiovasc. Surg. 144, 1222–1228 (2012).

    Article  Google Scholar 

  25. Warnecke, G. et al. Normothermic perfusion of donor lungs for preservation and assessment with the Organ Care System Lung before bilateral transplantation: a pilot study of 12 patients. Lancet 380, 1851–1858 (2012).

    Article  Google Scholar 

  26. Eschbach, J. Jr, Hutchings, R., Meston, B., Burnell, J. & Scribner, B. A technique for repetitive and long-term human cross circulation. ASAIO J. 10, 280–284 (1964).

    Google Scholar 

  27. Burnell, J. et al. Observations on cross circulation in man. Am. J. Med. 38, 832–841 (1965).

    Article  CAS  Google Scholar 

  28. Burnell, J. et al. Acute hepatic coma treated by cross-circulation or exchange transfusion. N. Engl. J. Med. 276, 935–943 (1967).

    Article  CAS  Google Scholar 

  29. Saxena, P. et al. Procurement of lungs for transplantation following donation after circulatory death: the Alfred technique. J. Surg. Res. 192, 642–646 (2014).

    Article  Google Scholar 

  30. Sundaresan, S., Trachiotis, G. D., Aoe, M., Patterson, G. A. & Cooper, J. D. Donor lung procurement: assessment and operative technique. Ann. Thorac. Surg. 56, 1409–1413 (1993).

    Article  CAS  Google Scholar 

  31. Sanchez, P. G., Bittle, G. J., Burdorf, L., Pierson, R. N. & Griffith, B. P. State of art: clinical ex vivo lung perfusion: rationale, current status, and future directions. J. Heart Lung Transplant. 31, 339–348 (2012).

    Article  Google Scholar 

  32. Roman, M. et al. Comparison between cellular and acellular perfusates for ex vivo lung perfusion in a porcine model. J. Heart Lung Transplant. 34, 978–987 (2015).

    Article  Google Scholar 

  33. Lee, J. W., Fang, X., Gupta, N., Serikov, V. & Matthay, M. A. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc. Natl Acad. Sci. USA 106, 16357–16362 (2009).

    Article  CAS  Google Scholar 

  34. Cypel, M. et al. Functional repair of human donor lungs by IL-10 gene therapy. Sci. Transl. Med. 1, 4ra9 (2009).

    Article  Google Scholar 

  35. Inci, I. et al. Reconditioning of an injured lung graft with intrabronchial surfactant instillation in an ex vivo lung perfusion system followed by transplantation. J. Surg. Res. 184, 1143–1149 (2013).

    Article  Google Scholar 

  36. Veevers-Lowe, J., Ball, S. G., Shuttleworth, A. & Kielty, C. M. Mesenchymal stem cell migration is regulated by fibronectin through α5β1-integrin-mediated activation of PDGFR-β and potentiation of growth factor signals. J. Cell Sci. 124, 1288–1300 (2011).

    Article  CAS  Google Scholar 

  37. O’Neill, J. D. et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann. Thorac. Surg. 96, 1046–1056 (2013).

    Article  Google Scholar 

  38. Petersen, T. H., Calle, E. A., Colehour, M. B. & Niklason, L. E. Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195, 222–231 (2011).

    Article  Google Scholar 

  39. Yeung, J. C. et al. Outcomes after transplantation of lungs preserved for more than 12 h: a retrospective study. Lancet Respir. Med. 5, 119–124 (2016).

    Article  Google Scholar 

  40. Steen, S. et al. Transplantation of lungs from non–heart-beating donors after functional assessment ex vivo. Ann. Thorac. Surg. 76, 244–252 (2003).

    Article  Google Scholar 

  41. Cypel, M. et al. Technique for prolonged normothermic ex vivo lung perfusion. J. Heart Lung Transplant. 27, 1319–1325 (2008).

    Article  Google Scholar 

  42. Kitsiouli, E., Nakos, G. & Lekka, M. E. Phospholipase A 2 subclasses in acute respiratory distress syndrome. Biochim. Biophys. Acta 1792, 941–953 (2009).

    Article  CAS  Google Scholar 

  43. Maxey, T. S. et al. Tumor necrosis factor-α from resident lung cells is a key initiating factor in pulmonary ischemia-reperfusion injury. J. Thorac. Cardiovasc. Surg. 127, 541–547 (2004).

    Article  CAS  Google Scholar 

  44. Zhao, M. et al. Alveolar macrophage activation is a key initiation signal for acute lung ischemia-reperfusion injury. Am. J. Physiol. Lung Cell Mol. Physiol. 291, L1018–L1026 (2006).

    Article  CAS  Google Scholar 

  45. Eppinger, M. J., Jones, M. L., Deeb, G. M., Bolling, S. F. & Ward, P. A. Pattern of injury and the role of neutrophils in reperfusion injury of rat lung. J. Surg. Res. 58, 713–718 (1995).

    Article  CAS  Google Scholar 

  46. Kim, J., O’Neill, J. D., Dorrello, N. V., Bacchetta, M. & Vunjak-Novakovic, G. Targeted delivery of liquid microvolumes into the lung. Proc. Natl Acad. Sci. USA 112, 11530–11535 (2015).

    Article  CAS  Google Scholar 

  47. Loer, S. A., Scheeren, T. W. & Tarnow, J. How much oxygen does the human lung consume? Anesthesiology 86, 532–537 (1997).

    Article  CAS  Google Scholar 

  48. Wagner, D. E. et al. Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials 35, 3281–3297 (2014).

    Article  CAS  Google Scholar 

  49. Hogan, B. L. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138 (2014).

    Article  CAS  Google Scholar 

  50. Sachs, D. H. et al. Transplantation in miniature swine. I. Fixation of the major histocompatibility complex. Transplantation 22, 559–567 (1976).

    Article  CAS  Google Scholar 

  51. Voyta, J. C., Via, D. P., Butterfield, C. E. & Zetter, B. R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99, 2034–2040 (1984).

    Article  CAS  Google Scholar 

  52. Islam, M. N., Gusarova, G. A., Monma, E., Das, S. R. & Bhattacharya, J. F-actin scaffold stabilizes lamellar bodies during surfactant secretion. Am. J. Physiol. Lung Cell Mol. Physiol. 306, L50–L57 (2014).

    Article  CAS  Google Scholar 

  53. Rampersad, S. N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12, 12347–12360 (2012).

    Article  CAS  Google Scholar 

  54. Francis, R. & Lo, C. Ex vivo method for high resolution imaging of cilia motility in rodent airway epithelia. J. Vis. Exp. 78, e50343 (2013).

    Google Scholar 

  55. Gibson-Corley, K. N., Olivier, A. K. & Meyerholz, D. K. Principles for valid histopathologic scoring in research. Vet. Pathol. 50, 1007–1015 (2013).

    Article  CAS  Google Scholar 

  56. Reece, T. B. et al. Adenosine A 2A receptor activation reduces inflammation and preserves pulmonary function in an in vivo model of lung transplantation. J. Thorac. Cardiovasc. Surg. 129, 1137–1143 (2005).

    Article  CAS  Google Scholar 

  57. Mulloy, D. P. et al. Ex vivo rehabilitation of non–heart-beating donor lungs in preclinical porcine model: delayed perfusion results in superior lung function. J. Thorac. Cardiovasc. Surg. 144, 1208–1216 (2012).

    Article  Google Scholar 

  58. Gimble, J. M., Katz, A. J. & Bunnell, B. A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100, 1249–1260 (2007).

    Article  CAS  Google Scholar 

  59. Huang, S. X. et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 32, 84–91 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Sonett and A. Griesemer for discussions of the experimental design; D. Sachs for providing research swine; S. Halligan for administrative and logistical support; the Institute of Comparative Medicine veterinary staff, including K. Fragoso and A. Rivas, for their support with the animal studies; S. Ma for live cell imaging; B. Lee and H. Wobma for manuscript review; K. Brown and L. Cohen-Gould for TEM imaging; the Herbert Irving Comprehensive Cancer Center Molecular Pathology Shared Resources, including T. Wu, D. Sun and R. Chen for help with the analytics; M. Cheerharan, M. P. Salna and A. Taubman for experimental assistance; V. Dorrello for valuable discussions; J. Bernhard and J. Ng for providing mesenchymal cells; J. Bhattacharya for providing experimental reagents. The authors gratefully acknowledge funding support from the National Institutes of Health (grants HL134760, EB002520 and HL007854), the Richard Bartlett Foundation and the Mikati Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.D.O., B.A.G., J.K., S.C., D.Q., K.F., A.R. and M.B. performed the experiments. S.X.L.H. provided the human lung stem cells and experimental reagents. Y.-W.C. performed the live imaging. C.M. performed the blinded pathologic assessment. J.D.O., B.A.G., H.-W.S., M.B. and G.V.-N. co-analysed the data. J.D.O., B.A.G., H-W.S., M.B. and G.V.-N co-wrote the manuscript.

Corresponding authors

Correspondence to Matthew Bacchetta or Gordana Vunjak-Novakovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary text, figures and tables. (PDF 8336 kb)

Supplementary Video 1

Time-lapse footage (1 frame per minute) of the extracorporeal lung, recipient vitals (top right panel), and perfusion data showing the trans-pulmonary pressure gradient (bottom right panel), from cannulation through 36 hours of cross-circulation. (MOV 25221 kb)

Supplementary Video 2

Bronchoscopic video obtained on an ischemic recovered lung. Video obtained at the start of cross-circulation (left panel; demonstrating pulmonary edema), and video obtained at the conclusion of 36 hours of extracorporeal support (right panel; demonstrating intact bronchial microvasculature and the absence of airway edema and secretions). (MP4 10158 kb)

Supplementary Video 3

Real-time transpleural video surveillance of near-infrared (NIR)-labelled cells delivered into the extracorporeal lung. The transpleural imaging system allows the lung to be ventilated while imaging. (MOV 2302 kb)

Supplementary Video 4

Live cilia imaging demonstrating coordinated ciliary beating via the movement of fluorescent microbeads (diameter, 0.2 µm). Airway specimen obtained after 36 hours of cross-circulation support. (MOV 26628 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Neill, J., Guenthart, B., Kim, J. et al. Cross-circulation for extracorporeal support and recovery of the lung. Nat Biomed Eng 1, 0037 (2017). https://doi.org/10.1038/s41551-017-0037

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-017-0037

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research