Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An extended low-density atmosphere around the Jupiter-sized planet WASP-193 b

Abstract

Gas giants transiting bright nearby stars provide crucial insights into planetary system formation and evolution mechanisms. Most of these planets show certain average characteristics, serving as benchmarks for our understanding of planetary systems. However, outliers like the planet we present in this study, WASP-193 b, offer unique opportunities to explore unconventional formation and evolution processes. This planet completes an orbit around its V-band-magnitude 12.2 F9 main-sequence host star every 6.25 days. Our analyses found that WASP-193 b has a mass of 0.139 ± 0.029 MJ and a radius of 1.464 ± 0.058 RJ, translating into an extremely low density of 0.059 ± 0.014g cm−3, at least one order of magnitude less than standard gas giants like Jupiter. Typical gas giants such as Jupiter have densities that range between 0.2 g cm−3 and 2 g cm−3. The combination of its large transit depth (1.4%), extremely low density, high-equilibrium temperature (1,254 ± 31 K) and the infrared brightness of its host star (K-band magnitude 10.7) makes WASP-193 b an exquisite target for characterization by transmission spectroscopy (transmission spectroscopy metric ~600). One single JWST transit observation would yield detailed insights into its atmospheric properties and planetary mass, providing a unique window to explore the mechanisms behind its exceptionally low density and shed light on giant planets’ diverse nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photometric and spectroscopic follow-up.
Fig. 2: Planetary diagrams of known transiting exoplanets with radius and mass precisions better than 8% and 25%, respectively.
Fig. 3: Planetary radius as a function of age for two evolution models.
Fig. 4: Feasibility of WASP-193 b for transmission spectroscopy studies.
Fig. 5: WASP-193 b as an exquisite target for atmospheric characterization.

Similar content being viewed by others

Data availability

The TRAPPIST-South and SPECULOOS-South data analysed are available at CDS via anonymous ftp at http://cdsarc.u-strasbg.fr/ (130.79.128.5). The HARPS and CORALIE data analysed are available in the European Southern Observatory archive (ESO; http://archive.eso.org/cms.html) The TESS data analysed are available in the Mikulski Archive for Space Telescopes (MAST; https://archive.stsci.edu/). Source data are provided with this paper.

Code availability

The Prose and MCMC codes used for this paper are publicly available.

References

  1. Pollacco, D. L. et al. The WASP project and the SuperWASP cameras. Publ. Astron. Soc. Pac. 118, 1407–1418 (2006).

    Article  ADS  Google Scholar 

  2. Gillon, M. et al. TRAPPIST: a robotic telescope dedicated to the study of planetary systems. EPJ Web Conf 11, 06002 (2011).

    Article  Google Scholar 

  3. Jehin, E. et al. The SPECULOOS Southern Observatory begins its hunt for rocky planets. The Messenger 174, 2–7 (2018).

    ADS  Google Scholar 

  4. Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).

    Article  ADS  Google Scholar 

  5. Queloz, D. et al. Extrasolar planets in the Southern Hemisphere: the CORALIE survey. In From Extrasolar Planets to Cosmology: The VLT Opening Symposium (eds Bergeron, J. & Renzini, A.) 548–555 (Springer, 2000).

  6. Mayor, M. et al. Setting new standards with HARPS. The Messenger 114, 20–24 (2003).

    ADS  Google Scholar 

  7. Torres, G., Konacki, M., Sasselov, D. D. & Jha, S. Testing blend scenarios for extrasolar transiting planet candidates. I. OGLE-TR-33: a false positive. Astrophys. J. 614, 979–989 (2004).

    Article  ADS  Google Scholar 

  8. Doyle, A. P. et al. Accurate spectroscopic parameters of WASP planet host stars. Mon. Not. R. Astron. Soc. 428, 3164–3172 (2013).

    Article  ADS  Google Scholar 

  9. Gaia Collaboration. VizieR Online Data Catalog: Gaia EDR3 (Gaia Collaboration, 2020). VizieR Online Data Catalog https://ui.adsabs.harvard.edu/abs/2020yCat.1350....0G (2020).

  10. Eastman, J. D. et al. EXOFASTv2: a public, generalized, publication-quality exoplanet modeling code. Preprint at https://arxiv.org/abs/1907.09480 (2019).

  11. Scuflaire, R. et al. CLÉS, Code Liégeois d’Évolution Stellaire. Astrophys. Space Sci. 316, 83–91 (2008).

    Article  ADS  Google Scholar 

  12. Salmon, S. J. A. J., Van Grootel, V., Buldgen, G., Dupret, M. A. & Eggenberger, P. Reinvestigating α Centauri AB in light of asteroseismic forward and inverse methods. Astron. Astrophys. 646, A7 (2021).

    Article  Google Scholar 

  13. Gillon, M. et al. The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b. Astron. Astrophys. 542, A4 (2012).

    Article  Google Scholar 

  14. Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. Lett. 580, L171–L175 (2002).

    Article  ADS  Google Scholar 

  15. Murray, C. D. & Correia, A. C. M. in Exoplanets (ed. Seager, S.) 15–23 (Univ. Arizona Press, 2010).

  16. Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).

    Article  ADS  Google Scholar 

  17. Fortney, J. J., Marley, M. S. & Barnes, J. W. Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys. J. 659, 1661–1672 (2007).

    Article  ADS  Google Scholar 

  18. Baraffe, I., Chabrier, G. & Barman, T. Structure and evolution of super-Earth to super-Jupiter exoplanets. I. Heavy element enrichment in the interior. Astron. Astrophys. 482, 315–332 (2008).

    Article  ADS  Google Scholar 

  19. Weiss, L. M. et al. The mass of KOI-94d and a relation for planet radius, mass, and incident flux. Astrophys. J. 768, 14 (2013).

    Article  ADS  Google Scholar 

  20. Sestovic, M., Demory, B.-O. & Queloz, D. Investigating hot-Jupiter inflated radii with hierarchical Bayesian modelling. Astron. Astrophys. 616, A76 (2018).

    Article  Google Scholar 

  21. Lopez, E. D. & Fortney, J. J. Re-inflated warm Jupiters around red giants. Astrophys. J. 818, 4 (2016).

    Article  ADS  Google Scholar 

  22. Helled, R. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 665 (Univ. Arizona Press, 2014).

  23. Deng, H., Mayer, L. & Helled, R. Formation of intermediate-mass planets via magnetically controlled disk fragmentation. Nat. Astron. 5, 440–444 (2021).

    Article  ADS  Google Scholar 

  24. Müller, S. & Helled, R. Synthetic evolution tracks of giant planets. Mon. Not. R. Astron. Soc. 507, 2094–2102 (2021).

    Article  ADS  Google Scholar 

  25. Marley, M. S., Fortney, J. J., Hubickyj, O., Bodenheimer, P. & Lissauer, J. J. On the luminosity of young Jupiters. Astrophys. J. 655, 541–549 (2007).

    Article  ADS  Google Scholar 

  26. Chabrier, G., Mazevet, S. & Soubiran, F. A new equation of state for dense hydrogen–helium mixtures. Astrophys. J. 872, 51 (2019).

    Article  ADS  Google Scholar 

  27. More, R., Warren, K., Young, D. & Zimmerman, G. A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 3059–3078 (1988).

    Article  ADS  Google Scholar 

  28. Freedman, R. S. et al. Gaseous mean opacities for giant planet and ultracool dwarf atmospheres over a range of metallicities and temperatures. Astrophys. J. Suppl. Ser. 214, 25 (2014).

    Article  ADS  Google Scholar 

  29. Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    Article  ADS  Google Scholar 

  30. Dotter, A. MESA Isochrones and Stellar Tracks (MIST) 0: methods for the construction of stellar isochrones. Astrophys. J. Suppl. Ser. 222, 8 (2016).

    Article  ADS  Google Scholar 

  31. Teske, J. K., Thorngren, D., Fortney, J. J., Hinkel, N. & Brewer, J. M. Do metal-rich stars make metal-rich planets? New insights on giant planet formation from host star abundances. Astron. J. 158, 239 (2019).

    Article  ADS  Google Scholar 

  32. Müller, S., Helled, R. & Cumming, A. The challenge of forming a fuzzy core in Jupiter. Astron. Astrophys. 638, A121 (2020).

    Article  ADS  Google Scholar 

  33. Poser, A. J., Nettelmann, N. & Redmer, R. The effect of clouds as an additional opacity source on the inferred metallicity of giant exoplanets. Atmosphere 10, 664 (2019).

    Article  ADS  Google Scholar 

  34. Vazan, A., Helled, R. & Guillot, T. Jupiter’s evolution with primordial composition gradients. Astron. Astrophys. 610, L14 (2018).

    Article  ADS  Google Scholar 

  35. Leconte, J. & Chabrier, G. A new vision of giant planet interiors: impact of double diffusive convection. Astron. Astrophys. 540, A20 (2012).

    Article  ADS  Google Scholar 

  36. Kurokawa, H. & Inutsuka, S.-i On the radius anomaly of hot jupiters: reexamination of the possibility and impact of layered convection. Astrophys. J. 815, 78 (2015).

    Article  ADS  Google Scholar 

  37. Stevenson, D. & Salpeter, E. The dynamics and helium distribution in hydrogen-helium fluid planets. Astrophys. J. Suppl. Ser. 35, 239–261 (1977).

    Article  ADS  Google Scholar 

  38. Fortney, J. J. & Hubbard, W. Effects of helium phase separation on the evolution of extrasolar giant planets. Astrophys. J. 608, 1039 (2004).

    Article  ADS  Google Scholar 

  39. Laughlin, G., Crismani, M. & Adams, F. C. On the anomalous radii of the transiting extrasolar planets. Astrophys. J. Lett. 729, L7 (2011).

    Article  ADS  Google Scholar 

  40. Fortney, J. J., Dawson, R. I. & Komacek, T. D. Hot jupiters: origins, structure, atmospheres. J. Geophys. Res. Planets 126, e2020JE006629 (2021).

    Article  ADS  Google Scholar 

  41. Thorngren, D. P. & Fortney, J. J. Bayesian analysis of hot-Jupiter radius anomalies: evidence for ohmic dissipation? Astron. J. 155, 214 (2018).

    Article  ADS  Google Scholar 

  42. Fossati, L. et al. Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets. Astron. Astrophys. 598, A90 (2017).

    Article  Google Scholar 

  43. Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).

    Article  ADS  Google Scholar 

  44. Niraula, P. et al. The impending opacity challenge in exoplanet atmospheric characterization. Nat. Astron. 6, 1287–1295 (2022).

    Article  ADS  Google Scholar 

  45. Niraula, P., de Wit, J., Gordon, I. E., Hargreaves, R. J. & Sousa-Silva, C. Origin and extent of the opacity challenge for atmospheric retrievals of WASP-39 b. Astrophys. J. Lett. 950, L17 (2023).

    Article  ADS  Google Scholar 

  46. de Wit, J. & Seager, S. Constraining exoplanet mass from transmission spectroscopy. Science 342, 1473–1477 (2013).

    Article  ADS  Google Scholar 

  47. Seager, S. & Sasselov, D. D. Theoretical transmission spectra during extrasolar giant planet transits. Astrophys. J. 537, 916–921 (2000).

    Article  ADS  Google Scholar 

  48. Allart, R. et al. Spectrally resolved helium absorption from the extended atmosphere of a warm Neptune-mass exoplanet. Science 362, 1384–1387 (2018).

    Article  ADS  Google Scholar 

  49. Feinstein, A. D. et al. Early release science of the exoplanet WASP-39b with JWST NIRISS. Nature 614, 670–675 (2023).

    Article  ADS  Google Scholar 

  50. Mordasini, C., van Boekel, R., Mollière, P., Henning, T. & Benneke, B. The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. Astrophys. J. 832, 41 (2016).

    Article  ADS  Google Scholar 

  51. Meylan, G., Madrid, J. P. & Macchetto, D. Hubble Space Telescope science metrics. Publ. Astron. Soc. Pac. 116, 790–796 (2004).

    Article  ADS  Google Scholar 

  52. Pepe, F. A. et al. in Ground-based and Airborne Instrumentation for Astronomy III Vol. 7735 (eds McLean, I. S. et al.) 209–217 (SPIE, 2010).

  53. Dressler, A. et al. IMACS: the Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade. Publ. Astron. Soc. Pac. 123, 288–332 (2011).

    Article  ADS  Google Scholar 

  54. Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).

    Article  ADS  Google Scholar 

  55. Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).

    Article  ADS  Google Scholar 

  56. Wakeford, H. R. et al. HST PanCET program: a cloudy atmosphere for the promising JWST target WASP-101b. Astrophys. J. 835, L12 (2017).

    Article  ADS  Google Scholar 

  57. Sing, D. K. et al. The Hubble Space Telescope PanCET program: exospheric Mg ii and Fe ii in the near-ultraviolet transmission spectrum of WASP-121b using jitter decorrelation. Astron. J. 158, 91 (2019).

    Article  ADS  Google Scholar 

  58. Skaf, N. et al. ARES. II. Characterizing the hot jupiters WASP-127 b, WASP-79 b, and WASP-62b with the Hubble Space Telescope. Astron. J. 160, 109 (2020).

    Article  ADS  Google Scholar 

  59. Collier Cameron, A. et al. A fast hybrid algorithm for exoplanetary transit searches. Mon. Not. R. Astron. Soc. 373, 799–810 (2006).

    Article  ADS  Google Scholar 

  60. Street, R. A. et al. Status of SuperWASP I (La Palma). Astron. Nach. 325, 565–567 (2004).

    Article  ADS  Google Scholar 

  61. Jehin, E. et al. TRAPPIST: Transiting Planets and Planetesimals Small Telescope. The Messenger 145, 2–6 (2011).

    ADS  Google Scholar 

  62. Barkaoui, K. et al. Discovery of three new transiting hot Jupiters: WASP-161 b, WASP-163 b, and WASP-170 b. Astron. J. 157, 43 (2019).

    Article  ADS  Google Scholar 

  63. Garcia, L. J. et al. PROSE: a Python framework for modular astronomical images processing. Mon. Not. R. Astron. Soc. 509, 4817–4828 (2021).

    Article  ADS  Google Scholar 

  64. Burdanov, A., Delrez, L., Gillon, M. & Jehin, E. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 130 (Springer, 2017).

  65. Delrez, L. et al. SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs. Proc. SPIE 10700, 107001I (2018).

    Google Scholar 

  66. Burdanov, A. Y. et al. SPECULOOS Northern Observatory: searching for red worlds in the northern skies. Publ. Astron. Soc. Pac. 134, 105001 (2022).

    Article  ADS  Google Scholar 

  67. Demory, B. O. et al. A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266. Astron. Astrophys. 642, A49 (2020).

    Article  Google Scholar 

  68. Stumpe, M. C. et al. Kepler presearch data conditioning I—architecture and algorithms for error correction in Kepler light curves. Publ. Astron. Soc. Pac. 124, 985 (2012).

    Article  ADS  Google Scholar 

  69. Smith, J. C. et al. Kepler presearch data conditioning II—a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pac. 124, 1000 (2012).

    Article  ADS  Google Scholar 

  70. Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data. Publ. Astron. Soc. Pac. 126, 114 (2014).

    Article  Google Scholar 

  71. Baranne, A. et al. ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. Ser. 119, 373–390 (1996).

    Article  ADS  Google Scholar 

  72. Zechmeister, M. & Kürster, M. The generalised Lomb–Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496, 577–584 (2009).

    Article  ADS  Google Scholar 

  73. Doyle, A. P., Davies, G. R., Smalley, B., Chaplin, W. J. & Elsworth, Y. Determining stellar macroturbulence using asteroseismic rotational velocities from Kepler. Mon. Not. R. Astron. Soc. 444, 3592–3602 (2014).

    Article  ADS  Google Scholar 

  74. Bruntt, H. et al. Accurate fundamental parameters for 23 bright solar-type stars. Mon. Not. R. Astron. Soc. 405, 1907–1923 (2010).

    ADS  Google Scholar 

  75. Gray, R. O. & Corbally, C. J. An expert computer program for classifying stars on the MK spectral classification system. Astron. J. 147, 80 (2014).

    Article  ADS  Google Scholar 

  76. Eastman, J., Gaudi, B. S. & Agol, E. EXOFAST: a fast exoplanetary fitting suite in IDL. Publ. Astron. Soc. Pac. 125, 83 (2013).

    Article  ADS  Google Scholar 

  77. Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Article  Google Scholar 

  78. Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis 2nd edn (Chapman & Hall, 2003).

  79. Henden, A. A. et al. VizieR Online Data Catalog: AAVSO Photometric All Sky Survey (APASS) DR9 (Henden+, 2016). VizieR Online Data Catalog https://ui.adsabs.harvard.edu/abs/2016yCat.2336....0H (2016).

  80. Cutri, R. M. et al. 2MASS All Sky Catalog of Point Sources (2003); https://ui.adsabs.harvard.edu/abs/2003tmc..book.....C

  81. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article  ADS  Google Scholar 

  82. Stassun, K. G. & Torres, G. Evidence for a systematic offset of −80 μas in the Gaia DR2 parallaxes. Astrophys. J. 862, 61 (2018).

    Article  ADS  Google Scholar 

  83. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  84. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  Google Scholar 

  85. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Article  MathSciNet  Google Scholar 

  86. Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron. Astrophys. 529, A75 (2011).

    Article  ADS  Google Scholar 

  87. wangenmarkers, E.-J. A practical solution to the pervasive problems of p values. Psychon. Bull. Rev. 14, 779–804 (2007).

    Article  Google Scholar 

  88. Maxted, P. F. L. et al. Five transiting hot Jupiters discovered using WASP-South, Euler, and TRAPPIST: WASP-119 b, WASP-124 b, WASP-126 b, WASP-129 b, and WASP-133 b. Astron. Astrophys. 591, A55 (2016).

    Article  Google Scholar 

  89. Jontof-Hutter, D., Dalba, P. A. & Livingston, J. H. TESS observations of Kepler systems with transit timing variations. Astron. J. 164, 42 (2022).

    Article  ADS  Google Scholar 

  90. Anderson, D. R. et al. Thermal emission at 4.5 and 8 μm of WASP-17b, an extremely large planet in a slightly eccentric orbit. Mon. Not. R. Astron. Soc. 416, 2108–2122 (2011).

    Article  ADS  Google Scholar 

  91. Lam, K. W. F. et al. From dense hot Jupiter to low-density Neptune: the discovery of WASP-127b, WASP-136b, and WASP-138b. Astron. Astrophys. 599, A3 (2017).

    Article  Google Scholar 

  92. Hartman, J. D. et al. HAT-P-65b and HAT-P-66b: two transiting inflated hot jupiters and observational evidence for the reinflation of close-in giant planets. Astron. J. 152, 182 (2016).

    Article  ADS  Google Scholar 

  93. Demory, B.-O. & Seager, S. Lack of Inflated radii for Kepler giant planet candidates receiving modest stellar irradiation. Astrophys. J. Suppl. Ser. 197, 12 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

WASP-South is hosted by the South African Astronomical Observatory and we are grateful for their ongoing support and assistance. Funding for WASP comes from consortium universities and from the UK’s Science and Technology Facilities Council. The research leading to these results has received funding from the European Research Council (ERC) under the FP/2007–2013 ERC grant agreement no. 336480, and under the H2020 ERC grant agreement no. 679030; and from an Actions de Recherche Concertée (ARC) grant, financed by the Wallonia-Brussels Federation. The Euler Swiss telescope by the Swiss National Science Foundation (SNF). This work has been carried out in part within the framework of the NCCR PlanetS supported by the Swiss National Science Foundation. This study is based on observations collected at the European Southern Observatory under ESO programme 0102.C-0414, principal investigator L.D.N. TRAPPIST-South is funded by the Belgian National Fund for Scientific Research (F.R.S.-FNRS) under grant PDR T.0120.21, with the participation of the Swiss National Science Fundation (SNF). M.G. is F.R.S.-FNRS Research Director and E.J. is F.R.S.-FNRS Senior Research Associate. V.V.G. is an F.R.S.-FNRS Research Associate. The postdoctoral fellowship of K.B. is funded by F.R.S.-FNRS grant T.0109.20 and by the Francqui Foundation. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T. The ULiege’s contribution to SPECULOOS has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) (grant agreement no. 336480/SPECULOOS), from the Balzan Prize Foundation, from the Belgian Scientific Research Foundation (F.R.S.-FNRS; grant no. T.0109.20), from the University of Liege, and from the ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation. This work is supported by a grant from the Simons Foundation (principal investigator D.Q., grant number 327127). J.d.W. and MIT gratefully acknowledge financial support from the Heising-Simons Foundation, Mrs. C. Masson, Masson and P. A. Gilman for Artemis, the first telescope of the SPECULOOS network situated in Tenerife, Spain. This work is supported by the Swiss National Science Foundation (PP00P2-163967, PP00P2-190080 and the National Centre for Competence in Research PlanetS). This work has received fund from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 803193/BEBOP), from the MERAC foundation, and from the Science and Technology Facilities Council (STFC; grant no. ST/S00193X/1). C.D. was supported by the Swiss National Science Foundation (SNSF) under grant PZ00P2_174028. M.L. acknowledges support of the Swiss National Science Foundation under grant number PCEFP2_194576. E.D. is a Paris Region Fellow and acknowledges support from the innovation and research Horizon 2020 programme in the context of the Marie Sklodowska-Curie subvention 945298. F.J.P. acknowledges financial support from the grant CEX2021-001131-S funded by MCIN/AEI/ 10.13039/501100011033 and through projects PID2019-109522GB-C52 and PID2022-137241NB-C43.

Author information

Authors and Affiliations

Authors

Contributions

K.B. led the project and performed and interpreted the global analyses with support from F.J.P. and M. Gillon. F.J.P. led the interpretation of the results and writing of the paper. P.N. and J.d.W. performed the assessment of atmospheric characterization suitability. C.H., O.T., D.R.A., S.U. and R.G.W. performed the WASP-South observation and data reduction. C.D., R.H. and S.M. performed planet interior models and interpretation of the results. B.S., V.V.G., P.F.L.M., A.S. and M. Ghachoui performed spectroscopic data, stellar evolutionary models and SED analysis. L.D.N., F.B. and M.L. performed radial velocity measurements. E.J., E.D., C.A.M. and P.P.P. performed photometric follow-ups using TRAPPIST-South and SPECULOOS-South facilities and data reduction using Prose. All co-authors read and commented on the paper and helped with its revision.

Corresponding authors

Correspondence to Khalid Barkaoui or Francisco J. Pozuelos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Thomas Wilson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Tables 1–5.

Supplementary Data

WASP-South photometric data.

Source data

Source Data Fig. 1

Space and ground-based photometry and RVs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkaoui, K., Pozuelos, F.J., Hellier, C. et al. An extended low-density atmosphere around the Jupiter-sized planet WASP-193 b. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02259-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing