Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An anorthositic meteorite supporting an ancient magma ocean on Vesta

Abstract

The widespread occurrence of ferroan anorthosites and other magmatic rock types in Apollo lunar samples directly contributed to the construction and development of modern planetary formation models. If the Vesta magma ocean (VMO) model is analogous to the lunar magma ocean model, anorthosites should be present as a late crystallization product of the Vesta magma ocean. However, the lack of anorthositic meteorites unequivocally linked to Vesta or its parent body casts doubts on the existence of a past VMO and to our knowledge of Vesta’s formation and early evolution. Here, we report a newly discovered ferroan anorthosite, Northwest Africa 15118, consisting entirely of anorthite (~94 vol%) and orthopyroxene (~6 vol%). We show that the mineral chemical compositions, whole-rock oxygen isotope composition (Δ17O = −0.243 ± 0.014‰), as well as chromium isotope composition in chromite (ε54Cr = −0.74 ± 0.14), of Northwest Africa 15118 overlaps with howardite–eucrite–diogenite meteorites, indicating a Vestan origin for this meteorite. The occurrence of ferroan anorthosite with prominent positive Eu anomalies supports a primary anorthositic crust layer in Vesta, thus validating the VMO model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The main mass photograph and local backscattered electron image of NWA 15118.
Fig. 2: Chemical, oxygen and chromium isotopic composition of minerals in NWA 15118.
Fig. 3: Rare earth element patterns of minerals and whole rock of NWA 15118.
Fig. 4: The formation and evolutional model of Vesta.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper, its Supplementary Information and Supplementary Data.

References

  1. Mittlefehldt, D. W. Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Geochem. 75, 155–183 (2015).

    Article  Google Scholar 

  2. Russell, C. T. et al. Dawn at Vesta: testing the protoplanetary paradigm. Science 336, 684–686 (2012).

    Article  ADS  Google Scholar 

  3. Righter, K. & Drake, M. A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci. 32, 929–944 (1997).

    Article  ADS  Google Scholar 

  4. Barrat, J. A., Yamaguchi, A., Zanda, B., Bollinger, C. & Bohn, M. Relative chronology of crust formation on asteroid Vesta: insights from the geochemistry of diogenites. Geochim. Cosmochim. Acta 74, 6218–6231 (2010).

    Article  ADS  Google Scholar 

  5. Dale, C. W. et al. Late accretion on the earliest planetesimals revealed by the highly siderophile elements. Science 336, 72–75 (2012).

    Article  ADS  Google Scholar 

  6. Day, J. M. D., Walker, R. J., Qin, L. & Rumble, D. Late accretion as a natural consequence of planetary growth. Nat. Geosci. 5, 614–617 (2012).

    Article  ADS  Google Scholar 

  7. Greenwood, R. C., Franchi, I. A., Jambon, A. & Buchanan, P. C. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435, 916–918 (2005).

    Article  ADS  Google Scholar 

  8. Greenwood, R. C. et al. The oxygen isotope composition of diogenites: evidence for early global melting on a single, compositionally diverse, HED parent body. Earth Planet. Sci. Lett. 390, 165–174 (2014).

    Article  ADS  Google Scholar 

  9. Steenstra, E. S., Knibbe, J. S., Rai, N. & van Westrenen, W. Constraints on core formation in Vesta from metal–silicate partitioning of siderophile elements. Geochem. Perspect. Lett. 177, 48–61 (2016).

    Google Scholar 

  10. Schiller, M. et al. Rapid timescales for magma ocean crystallization on the howardite-eucrite-diogenite parent body. Astrophys. J. 740, L22 (2011).

    Article  ADS  Google Scholar 

  11. Mandler, B. E. & Elkins-Tanton, L. T. The origin of eucrites, diogenites, and olivine diogenites: magma ocean crystallization and shallow magma chamber processes on Vesta. Meteorit. Planet. Sci. 48, 2333–2349 (2013).

    Article  ADS  Google Scholar 

  12. Dhaliwal, J. D., Day, J. M. D. & Tait, K. T. Pristinity and petrogenesis of eucrites. Meteorit. Planet. Sci. 58, 275–295 (2023).

    Article  ADS  Google Scholar 

  13. Kagami, S., Haba, M. K., Yokoyama, T., Usui, T. & Greenwood, R. C. Geochemistry and Sm‒Nd chronology of a Stannern-group eucrite, Northwest Africa 7188. Meteorit. Planet. Sci. 54, 2710–2728 (2019).

    Article  ADS  Google Scholar 

  14. Barrat, J. A. & Yamaguchi, A. Comment on “The origin of eucrites, diogenites, and olivine diogenites: magma ocean crystallization and shallow magma processes on Vesta” by B. E. Mandler and L. T. Elkins-Tanton. Meteorit. Planet. Sci. 49, 468–472 (2014).

    Article  ADS  Google Scholar 

  15. Hublet et al. Differentiation and magmatic activity in Vesta evidenced by 26Al-26Mg dating in eucrites and diogenites. Geochim. Cosmochim. Acta 218, 73–97 (2017).

    Article  ADS  Google Scholar 

  16. Zhang, A. C. et al. Evidence of metasomatism in the interior of Vesta. Nat. Commun. 11, 1289 (2020).

    Article  ADS  Google Scholar 

  17. Wilson, L. & Keil, K. Volcanic activity on differentiated asteroids: a review and analysis. Geochem. 72, 289–321 (2012).

    Article  Google Scholar 

  18. Wilson, L. & Keil, K. Fast melt production and easy melt migration in differentiated asteroids implies giant sills not magma oceans. LPI Contrib. 1768, 8004 (2013).

    ADS  Google Scholar 

  19. Mittlefehldt, D. W. The genesis of diogenites and HED parent body petrogenesis. Geochim. Cosmochim. Acta 58, 1537–1552 (1994).

    Article  ADS  Google Scholar 

  20. Warren, P. H. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. 13, 201–240 (1985).

    Article  ADS  Google Scholar 

  21. Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: surface expressions and crust-mantle origins. J. Geophys. Res. 105, 4197–4416 (2000).

    Article  ADS  Google Scholar 

  22. Shearer, C. K. et al. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006).

    Article  Google Scholar 

  23. Delano, J. W. Scientific exploration of the moon. Elements 5, 11–16 (2009).

    Article  ADS  Google Scholar 

  24. Taylor, G. J. Ancient Lunar Crust: Origin, Composition, and Implications. Elements 5, 17–22 (2009).

    Article  ADS  Google Scholar 

  25. Papike, J. J., Karner, J. M. & Shearer, C. K. Determination of planetary basalt parentage: A simple technique using the electron microprobe. Am. Mineral. 88, 469–472 (2003).

    Article  ADS  Google Scholar 

  26. Morrison, S. M. et al. Crystal chemistry of Martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater, Mars. Am. Mineral. 103, 858–872 (2018).

    Article  ADS  Google Scholar 

  27. Ruzicka, A., Snyder, G. A. & Taylor, L. A. Vesta as the howardite, eucrite and diogenite parent body: implications for the size of the core and the large-scale differentiation. Meteorit. Planet. Sci. 32, 825–840 (1997).

    Article  ADS  Google Scholar 

  28. Frossard, P., Boyet, M., Bouvier, A., Hammouda, T. & Monteux, J. Evidence for anorthositic crust formed on an inner solar system planetesimal. Geochem. Perspect. Lett. II, 28–32 (2019).

    Article  Google Scholar 

  29. Tonks, W. B. & Melosh, H. J. in Origin of the Earth (eds Newsom H. & Jones J.) 151–174 (Oxford Univ. Press, 1990).

  30. Grove, T. L. & Krawczynski, M. J. Lunar mare volcanism: Where did the magmas come from? Elements 5, 29–34 (2009).

    Article  ADS  Google Scholar 

  31. Ashwal, L. The temporality of anorthosites. Can. Mineral. 48, 711–728 (2010).

    Article  Google Scholar 

  32. Carter, J. & Poulet, F. Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains. Nat. Geosci. 6, 1008–1012 (2013).

    Article  ADS  Google Scholar 

  33. Ammannito, E. et al. Olivine in an unexpected location on Vesta’s surface. Nature 504, 122–125 (2013).

    Article  ADS  Google Scholar 

  34. O’Neill, H. S. C. & Palme, H. Collisional erosion and the non-chondritic composition of the terrestrial planets. Philos. Trans. R. Soc. A 366, 4205–4238 (2008).

    Article  ADS  Google Scholar 

  35. Haba, M. K., Wotzlaw, J. F., Lai, Y. J., Yamaguchi, A. & Schonbachler, M. Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collision. Nat. Geosci. 12, 510–515 (2019).

    Article  ADS  Google Scholar 

  36. Frossard, P., Israel, C., Bouvier, A. & Boyet, M. Earth’s composition was modified by collisional erosion. Science 377, 1529–1532 (2022).

    Article  ADS  Google Scholar 

  37. Mittlefehldt, D. W. in Treatise on Geochemistry. 1. Meteorites, Comets, and Planets (ed. Davis, A. M.) Ch. 11 (Elsevier, 2005).

  38. Welten, K. C. et al. Cosmic-ray exposure ages of diogenites and the recent collisional history of the howardite, eucrite, and diogenite parent body/bodies. Meteorit. Planet. Sci. 32, 891–902 (1997).

    Article  ADS  Google Scholar 

  39. Longhi, J. A. New view of lunar ferroan anorthosites: postmagma ocean petrogenesis. J. Geophys. Res. 108, 2–1 (2003).

    Google Scholar 

  40. Elkins-Tanton, L. T., Burgess, S. & Yin, Q.-Z. The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326–336 (2011).

    Article  ADS  Google Scholar 

  41. Nekvasil, H. et al. Uncommon behavior of plagioclase and the ancient lunar crust. Geophys. Res. Lett. 42, 10573–10579 (2015).

    Article  ADS  Google Scholar 

  42. Jeanloz, R. & Ahrens, T. J. The equation of state of a lunar anorthosite: 60025. Lunar Planet. Sci. Conf. 9, 2789–2803 (Pergamon Press,1978).

  43. Consolmagno, G. J., Britt, D. T. & Macke, R. J. The significance of meteorite density and porosity. Geochem. 68, 1–29 (2008).

    Article  Google Scholar 

  44. Wasson, J. T. Vesta and extensively melted asteroids: why HED meteorites are probably not from Vesta. Earth Planet. Sci. Lett. 381, 138–146 (2013).

    Article  ADS  Google Scholar 

  45. Sahijpal, S., Soni, P. & Gupta, G. Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources. Meteorit. Planet. Sci. 42, 1529–1548 (2007).

    Article  ADS  Google Scholar 

  46. Neumann, W., Breuer, D. & Spohn, T. Differentiation of Vesta: implications for a shallow magma ocean. Earth Planet. Sci. Lett. 395, 267–280 (2014).

    Article  ADS  Google Scholar 

  47. Toplis, M. J. et al. Chondritic models of 4 Vesta: implications for geochemical and geophysical properties. Meteorit. Planet. Sci. 48, 2300–2315 (2013).

    Article  ADS  Google Scholar 

  48. Kleine, T., Mezger, K., Munker, C., Palme, H. & Bischoff, A. 182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars. Geochim. Cosmochim. Acta 68, 2935–2946 (2004).

    Article  ADS  Google Scholar 

  49. Trinquier, A., Birck, J. L., Allègre, C. J., Göpel, C. & Ulfbeck, D. 53Mn-53Cr systematics of the early Solar System revisited. Geochim. Cosmochim. Acta 72, 5146–5163 (2008).

    Article  ADS  Google Scholar 

  50. Touboul, M., Sprung, P., Aciego, S. M., Bourdon, B. & Kleine, T. Hf–W chronology of the eucrite parent body. Geochim. Cosmochim. Acta 156, 106–121 (2015).

    Article  ADS  Google Scholar 

  51. Nyquist, L. E., Reese, Y., Wiesmann, H., Shih, C.-Y. & Takeda, H. Fossil 26Al and 53Mn in the Asuka 881394 eucrite: evidence of the earliest crust on asteroid 4 Vesta. Earth Planet. Sci. Lett. 214, 11–25 (2003).

    Article  ADS  Google Scholar 

  52. De Sanctis, M. C. et al. Spectroscopic characterization of mineralogy and its diversity across Vesta. Science 336, 697 (2012).

    Article  ADS  Google Scholar 

  53. Bottke, W. F., Nesvorny, D., Grimm, R. E., Morbidelli, A. & O’Brien, D. P. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006).

    Article  ADS  Google Scholar 

  54. Koike, M. et al. Evidence for early asteroidal collisions prior to 4.15 Ga from basaltic eucrite phosphate U-Pb chronology. Earth Planet. Sci. Lett. 549, 116497 (2020).

    Article  Google Scholar 

  55. Bao, H. M. & Thiemens, M. H. Generation of O2 from BaSO4 using a CO2-laser fluorination system for simultaneous analysis of δ18O and δ17O. Anal. Chem. 72, 4029–4032 (2000).

    Article  Google Scholar 

  56. Miller, M. F., Pack, A., Bindeman, I. N. & Greenwood, R. C. Standardizing the reporting of Δ’17O data from high precision oxygen triple-isotope ratio measurements of silicate rocks and minerals. Chem. Geol. 532, 119332 (2020).

    Article  Google Scholar 

  57. Shen, J. et al. Chromium isotope signature during continental crust subduction recorded in metamorphic rocks. Geochem. Geophys. Geosyst. 16, 3840–3854 (2015).

    Article  ADS  Google Scholar 

  58. Qin, L., Alexander, C. M. O. ’D., Carlson, R. W., Horan, M. F. & Yokoyama, T. Contributors to chromium isotope variation in meteorites. Geochim. Cosmochim. Acta 74, 1122–1145 (2010).

    Article  ADS  Google Scholar 

  59. Liu, J. et al. Cosmogenic effects on chromium isotopes in meteorites. Geochim. Cosmochim. Acta 251, 73–86 (2019).

    Article  ADS  Google Scholar 

  60. Shields, W. R., Murphy, T. J., Catanzaro, E. J. & Garner, E. L. Absolute isotopic abundance ratios and the atomic weight of a reference sample of chromium. J. Res. Nat. Bur. Stand. 70A, 193–197 (1966).

    Article  Google Scholar 

  61. Qi, L., Hu, J. & Gregoire, D. C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51, 507–513 (2000).

    Article  Google Scholar 

  62. Cheng, T., Nebel, O., Sossi, P. & Chen, F. K. Assessment of hafnium and iron isotope compositions of Chinese national igneous rock standard materials GSR-1 (granite), GSR-2(andesite), and GSR-3 (basalt). Int. J. Mass spectrom. 386, 61–66 (2015).

    Article  Google Scholar 

  63. Pearce, N. J. G. et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Geoanal. Res. 21, 115–144 (1997).

    Article  Google Scholar 

  64. Jochum, K. P., Willbold, M., Raczek, I., Stoll, B. & Herwig, K. Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand. Geoanal. Res. 29, 285–302 (2005).

    Article  Google Scholar 

  65. Hu, M. Y. et al. Preliminary characterisation of new reference materials for microanalysis: Chinese geological standard glasses CGSG-1, CGSG-2, CGSG-4 and CGSG-5. Geostand. Geoanal. Res. 35, 235–251 (2011).

    Article  ADS  Google Scholar 

  66. Vaci, Z. et al. Olivine-rich achondrites from Vesta and the missing mantle problem. Nat. Commun. 12, 5443 (2021).

    Article  ADS  Google Scholar 

  67. Marks, N. E., Borg, L. E., Shearer, C. K. & Cassat, W. S. Geochronology of an Apollo 16 clast provides evidence for a basin-forming impact 4.3 billion years ago. J. Geophys. Res. Planets 124, 2465–2481 (2019).

    Article  ADS  Google Scholar 

  68. Wasson, J. T. & Kallemeyn, G. W. Compositions of chondrites. Philos. Trans. R. Soc. A 325, 535–544 (1988).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank meteorite merchant D. Xu for accommodating the sample. We are grateful to G. Brey for comments and English polishing. We also thank A. Zhang, S. Wang, J. Yang, W. Zhou, G. Wang, R. Yin and D. Zhu for their valuable suggestions. This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDB 41000000), the Project of High-level Innovative Talents of Guizhou Province (no. GCC[2022]017-1), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (grant no. ZDBS-SSW-JSC007-10) and the National Natural Science Foundation of China (grant no. 42173046).

Author information

Authors and Affiliations

Authors

Contributions

S.L. designed the research. Y.F., D.S., S.Z., X.C, J.L. and M.L. obtained the data. D.Z. performed model calculation. All authors discussed the data. S.L., D.Z. and Q.S. wrote the paper. L.Q. and H.B. revised the manuscript.

Corresponding author

Correspondence to Shijie Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Tables 1–8 and Figs. 1–4.

Supplementary Data 1

Data for Supplementary Tables 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, D., Shu, Q. et al. An anorthositic meteorite supporting an ancient magma ocean on Vesta. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02243-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02243-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing