Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray detection of astrospheres around three main-sequence stars and their mass-loss rates

Abstract

Stellar winds of cool main-sequence stars are difficult to constrain observationally. One way to measure stellar mass-loss rates is to detect the soft X-ray emission from stellar astrospheres produced by charge exchange between heavy ions of the stellar wind and cold neutrals of the interstellar medium surrounding the stars. Here we report detections of charge-exchange-induced X-ray emission from the extended astrospheres of three main-sequence stars, 70 Ophiuchi, ϵ Eridani and 61 Cygni, based on the analysis of XMM-Newton observations. We estimate the corresponding mass-loss rates to be 66.5 ± 11.1, 15.6 ± 4.4 and 9.6 ± 4.1 times the solar mass-loss rate for 70 Ophiuchi, ϵ Eridani and 61 Cygni, respectively, and compare our results with the alternative ’hydrogen wall’ method. We also place upper limits on the mass-loss rates of several other main-sequence stars. This method has potential utility for determining the mass-loss rates from X-ray observations showing spatial extension beyond a coronal point source.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observations and schematics of the detected astrospheres.
Fig. 2: Stellar spectra of 70 Oph, ϵ Eri and 61 Cyg fitted with 3T vapec models.
Fig. 3: Spectra of the annuli surrounding 70 Oph (observation 0044740101), ϵ Eri (observation 0112880501) and 61 Cyg (observation 0801871001).
Fig. 4: Mass-loss rates per unit surface area in solar units as a function of the surface X-ray flux.

Similar content being viewed by others

Data availability

All data used for this study is publicly available in XMM-Newton data archive at https://nxsa.esac.esa.int/nxsa-web/.

Code availability

We have used the standard tools developed for the data reduction and calibration of XMM-Newton observations, the XMM-Newton Science Analysis System (SAS) (https://www.cosmos.esa.int/web/xmm-newton/sas). We have used the version xmmsas_20201028_0905-19.0.0 of the SAS and followed standard procedures for extraction of spectra of point-like sources as described in https://www.cosmos.esa.int/web/xmm-newton/sas-threads. For science analysis, we applied the X-ray spectral fitting package XSPEC (https://heasarc.gsfc.nasa.gov/xanadu/xspec/) created by the NASA’s High Energy Astrophysics Science Archive Research Center (https://heasarc.gsfc.nasa.gov/). We have used the publicly available Python library Matplotlib for plotting.

References

  1. Weber, E. J. & Davis, L. J. The angular momentum of the solar wind. Astrophys. J. 148, 217–227 (1967).

    Article  ADS  Google Scholar 

  2. Skumanich, A. Time scales for Ca ii emission decay, rotational braking, and lithium depletion. Astrophys. J. 171, 565 (1972).

    Article  ADS  Google Scholar 

  3. Wright, N. J., Drake, J. J., Mamajek, E. E. & Henry, G. W. The stellar-activity–rotation relationship and the evolution of stellar dynamos. Astrophys. J. 743, 48 (2011).

    Article  ADS  Google Scholar 

  4. Johnstone, C. P., Güdel, M., Brott, I. & Lüftinger, T. Stellar winds on the main-sequence. II. The evolution of rotation and winds. Astron. Astrophys. 577, A28 (2015).

    Article  ADS  Google Scholar 

  5. Pizzolato, N., Maggio, A., Micela, G., Sciortino, S. & Ventura, P. The stellar activity–rotation relationship revisited: dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. Astron. Astrophys. 397, 147–157 (2003).

    Article  ADS  Google Scholar 

  6. Tu, L., Johnstone, C. P., Güdel, M. & Lammer, H. The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015).

    Article  ADS  Google Scholar 

  7. Johnstone, C. P., Bartel, M. & Güdel, M. The active lives of stars: a complete description of the rotation and XUV evolution of F, G, K, and M dwarfs. Astron. Astrophys. 649, A96 (2021).

    Article  ADS  Google Scholar 

  8. Gronoff, G. et al. Atmospheric escape processes and planetary atmospheric evolution. J. Geophys. Res. Space Phys. 125, e27639 (2020).

    Article  ADS  Google Scholar 

  9. Bieging, J. H., Abbott, D. C. & Churchwell, E. B. Mass loss rates for Wolf–Rayet stars from radio continuum observations. Astrophys. J. 263, 207–214 (1982).

    Article  ADS  Google Scholar 

  10. Scuderi, S., Panagia, N., Stanghellini, C., Trigilio, C. & Umana, G. Radio observations of stellar winds from early type stars. Astron. Astrophys. 332, 251–267 (1998).

    ADS  Google Scholar 

  11. Drake, S. A. & Linsky, J. L. Radio continuum emission from winds, chromospheres and coronae of cool giants and supergiants. Astron. J. 91, 602–620 (1986).

    Article  ADS  Google Scholar 

  12. Cohen, M. & Bieging, J. H. Radio variability and structure of T Tauri stars. Astron. J. 92, 1396–1402 (1986).

    Article  ADS  Google Scholar 

  13. Folha, D. F. M. & Emerson, J. P. Near infrared hydrogen lines as diagnostic of accretion and winds in T Tauri stars. Astron. Astrophys. 365, 90–109 (2001).

    Article  ADS  Google Scholar 

  14. Weigelt, G. et al. VLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12 000. Studies of the primary star wind and innermost wind-wind collision zone. Astron. Astrophys. 594, A106 (2016).

    Article  Google Scholar 

  15. Conti, P. S. Mass loss in early-type stars. Annu. Rev. Astron. Astrophys. 16, 371–392 (1978).

    Article  ADS  Google Scholar 

  16. Fichtinger, B. et al. Radio emission and mass loss rate limits of four young solar-type stars. Astron. Astrophys. 599, A127 (2017).

    Article  Google Scholar 

  17. Kislyakova, K. G., Holmström, M., Lammer, H., Odert, P. & Khodachenko, M. L. Magnetic moment and plasma environment of HD 209458b as determined from Lyα observations. Science 346, 981–984 (2014).

    Article  ADS  Google Scholar 

  18. Vidotto, A. A. & Bourrier, V. Exoplanets as probes of the winds of host stars: the case of the M dwarf GJ 436. Mon. Not. R. Astron. Soc. 470, 4026–4033 (2017).

    Article  ADS  Google Scholar 

  19. Jardine, M. & Collier Cameron, A. Slingshot prominences: nature’s wind gauges. Mon. Not. R. Astron. Soc. 482, 2853–2860 (2019).

    Article  ADS  Google Scholar 

  20. Jardine, M., Collier Cameron, A., Donati, J. F. & Hussain, G. A. J. Slingshot prominences: coronal structure, mass-loss, and spin-down. Mon. Not. R. Astron. Soc. 491, 4076–4088 (2020).

    ADS  Google Scholar 

  21. Odert, P., Leitzinger, M., Hanslmeier, A. & Lammer, H. Stellar coronal mass ejections—I. Estimating occurrence frequencies and mass-loss rates. Mon. Not. R. Astron. Soc. 472, 876–890 (2017).

    Article  ADS  Google Scholar 

  22. Crosley, M. K. & Osten, R. A. Low-frequency radio transients on the active M-dwarf EQ Peg and the search for coronal mass ejections. Astrophys. J. 862, 113 (2018).

    Article  ADS  Google Scholar 

  23. Argiroffi, C. et al. A stellar flare-coronal mass ejection event revealed by X-ray plasma motions. Nat. Astron. 3, 742–748 (2019).

    Article  ADS  Google Scholar 

  24. Veronig, A. M. et al. Indications of stellar coronal mass ejections through coronal dimmings. Nat. Astron. 5, 697–706 (2021).

    Article  ADS  Google Scholar 

  25. Wood, B. E., Müller, H.-R., Zank, G. P. & Linsky, J. L. Measured mass-loss rates of solar-like stars as a function of age and activity. Astrophys. J. 574, 412–425 (2002).

    Article  ADS  Google Scholar 

  26. Wood, B. E., Müller, H. R., Zank, G. P., Linsky, J. L. & Redfield, S. New mass-loss measurements from astrospheric Lyα absorption. Astrophys. J. Lett. 628, L143–L146 (2005).

    Article  ADS  Google Scholar 

  27. Wood, B. E. et al. New observational constraints on the winds of M dwarf stars. Astrophys. J. 915, 37 (2021).

    Article  ADS  Google Scholar 

  28. Schwadron, N. A. & Cravens, T. E. Implications of solar wind composition for cometary X-rays. Astrophys. J. 544, 558–566 (2000).

    Article  ADS  Google Scholar 

  29. Lisse, C. M. et al. Discovery of X-ray and extreme ultraviolet emission from comet C/Hyakutake 1996 B2. Science 274, 205–209 (1996).

    Article  ADS  Google Scholar 

  30. Lisse, C. M. et al. Charge exchange-induced X-ray emission from comet C/1999 S4 (LINEAR). Science 292, 1343–1348 (2001).

    Article  ADS  Google Scholar 

  31. Lisse, C. M., Cravens, T. E. & Dennerl, K. X-ray and extreme ultraviolet emission from comets. in Comets II (eds Festou, M. C. et al.) 631–643 (2004).

  32. Bhardwaj, A. et al. X-rays from solar system objects. Planet. Space Sci. 55, 1135–1189 (2007).

    Article  ADS  Google Scholar 

  33. Kislyakova, K. G. et al. Stellar wind induced soft X-ray emission from close-in exoplanets. Astrophys. J. Lett. 799, L15 (2015).

    Article  ADS  Google Scholar 

  34. Wargelin, B. J. & Drake, J. J. Observability of stellar winds from late-type dwarfs via charge exchange X-ray emission. Astrophys. J. Lett. 546, L57–L60 (2001).

    Article  ADS  Google Scholar 

  35. Wargelin, B. J. & Drake, J. J. Stringent X-ray constraints on mass loss from Proxima Centauri. Astrophys. J. 578, 503–514 (2002).

    Article  ADS  Google Scholar 

  36. Jansen, F. et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001).

    Article  ADS  Google Scholar 

  37. Koutroumpa, D., Acero, F., Lallement, R., Ballet, J. & Kharchenko, V. OVii and OViii line emission in the diffuse soft X-ray background: heliospheric and galactic contributions. Astron. Astrophys. 475, 901–914 (2007).

    Article  ADS  Google Scholar 

  38. Kharchenko, V., Liu, W. & Dalgarno, A. X ray and EUV emission spectra of oxygen ions precipitating into the Jovian atmosphere. J. Geophys. Res. 103, 26687–26698 (1998).

    Article  ADS  Google Scholar 

  39. Wood, B. E., Müller, H.-R., Redfield, S. & Edelman, E. Evidence for a weak wind from the young Sun. Astrophys. J. Lett. 781, L33 (2014).

    Article  ADS  Google Scholar 

  40. Bouvier, J., Forestini, M. & Allain, S. The angular momentum evolution of low-mass stars. Astron. Astrophys. 326, 1023–1043 (1997).

    ADS  Google Scholar 

  41. Evensberget, D., Carter, B. D., Marsden, S. C., Brookshaw, L. & Folsom, C. P. The winds of young solar-type stars in the Hyades. Mon. Not. R. Astron. Soc. 506, 2309–2335 (2021).

    Article  ADS  Google Scholar 

  42. Cranmer, S. R. & Winebarger, A. R. The properties of the solar corona and its connection to the solar wind. Annu. Rev. Astron. Astrophys. 57, 157–187 (2019).

    Article  ADS  Google Scholar 

  43. Vidotto, A. A. The evolution of the solar wind. Living Rev. Sol. Phys. 18, 3 (2021).

    Article  ADS  Google Scholar 

  44. Cohen, O. & Drake, J. J. A grid of MHD models for stellar mass loss and spin-down rates of solar analogs. Astrophys. J. 783, 55 (2014).

    Article  ADS  Google Scholar 

  45. Chebly, J. J., Alvarado-Gómez, J. D., Poppenhäger, K. & Garraffo, C. Numerical quantification of the wind properties of cool main sequence stars. Mon. Not. R. Astron. Soc. 524, 5060–5079 (2023).

    Article  ADS  Google Scholar 

  46. Alvarado-Gómez, J. D. et al. Simulating the environment around planet-hosting stars. II. Stellar winds and inner astrospheres. Astron. Astrophys. 594, A95 (2016).

    Article  Google Scholar 

  47. Réville, V. et al. The role of Alfvén wave dynamics on the large-scale properties of the solar wind: comparing an MHD simulation with Parker Solar Probe E1 data. Astrophys. J. Suppl. Ser. 246, 24 (2020).

    Article  ADS  Google Scholar 

  48. Kavanagh, R. D. et al. Planet-induced radio emission from the coronae of M dwarfs: the case of Prox Cen and AU Mic. Mon. Not. R. Astron. Soc. 504, 1511–1518 (2021).

    Article  ADS  Google Scholar 

  49. Jardine, M., Vidotto, A. A. & See, V. Estimating stellar wind parameters from low-resolution magnetograms. Mon. Not. R. Astron. Soc. 465, L25–L29 (2017).

    Article  ADS  Google Scholar 

  50. Boro Saikia, S. et al. The solar wind from a stellar perspective. How do low-resolution data impact the determination of wind properties? Astron. Astrophys. 635, A178 (2020).

    Article  Google Scholar 

  51. Wargelin, B. J., Kornbleuth, M., Martin, P. L. & Juda, M. Observation and modeling of geocoronal charge exchange X-ray emission during solar wind gusts. Astrophys. J. 796, 28 (2014).

    Article  ADS  Google Scholar 

  52. Bruntt, H. et al. Accurate fundamental parameters for 23 bright solar-type stars. Mon. Not. R. Astron. Soc. 405, 1907–1923 (2010).

    ADS  Google Scholar 

  53. Pasinetti Fracassini, L. E., Pastori, L., Covino, S. & Pozzi, A. Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS)—third edition—comments and statistics. Astron. Astrophys. 367, 521–524 (2001).

    Article  ADS  Google Scholar 

  54. Kervella, P. et al. The radii of the nearby K5V and K7V stars 61 Cygni A & B. CHARA/FLUOR interferometry and CESAM2k modeling. Astron. Astrophys. 488, 667–674 (2008).

    Article  ADS  Google Scholar 

  55. Kervella, P., Thévenin, F. & Lovis, C. Proxima’s orbit around α Centauri. Astron. Astrophys. 598, L7 (2017).

    Article  ADS  Google Scholar 

  56. Snowden, S. L., Collier, M. R. & Kuntz, K. D. XMM-Newton observation of solar wind charge exchange emission. Astrophys. J. 610, 1182–1190 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K.G.K. and M.G. acknowledge the support by the Austrian Research Promotion Agency (FFG) Project 873671 ‘SmileEarth’. D.K. acknowledges the support by the CNES. J.A.C is supported by Royal Society grant DHF\R1\211068. We are grateful to B. E. Wood for calculating the position angles of several astrospheres.

Author information

Authors and Affiliations

Authors

Contributions

K.G.K. conceived the original idea of the paper and performed the majority of data reduction and analysis. M.G. contributed equally with K.G.K. to data interpretation. D.K. contributed with expertise of SWCX emission analysis and modelling in the heliosphere and by extension to astrospheres. J.A.C. provided their expertise for analysis of extended sources and instrumental effects. C.M.L. provided the final insight into the data’s interpretation that helped to refine the mass-loss estimates and put them in context. S.B.S. contributed her expertise on current state-of-the-art of stellar wind modelling and observations. All authors contributed to the text.

Corresponding author

Correspondence to K. G. Kislyakova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Julián Alvarado Gómez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Stellar spectra of stars without an astrospheric signal.

Stellar spectra of α Cen (obs ID 0760290301), Procyon (obs ID 0415580201), Prox Cen (obs ID 0801880501), and τ Cet (obs ID 0670380501) fitted with 3T vapec models, with the χ2 shown in the lower panels. The data are presented as mean values ± 1.64σ (90% confidence interval). The number of bins for statistics was 94 (Alpha Cen), 34 (Procyon), 63 (Prox Cen), and 18 (Tau Cet). The black error bars and the black histogram show the spectra and the fit, respectively, obtained with the PN camera, while the green and red error bars and histograms show the spectra and model fits from the MOS1 and MOS2 cameras, respectively.

Extended Data Fig. 2 Spectra of the annuli around the stars without an astrospheric signal.

Spectra of the annuli surrounding α Cen, Procyon, Prox Cen, and τ Cet, for the same observations shown in Extended Data Fig. 1.The data are presented as mean values ± 1.64σ (90% confidence interval). The number of bins for statistics are shown in Table 2. Only PN data are shown for clarity. The black error bars shown the data. The red solid lines shown the vapec+vapec+vapec model with an added Gaussian line at 0.56 keV. Only the red line is visible because the two models with and without the additional Gaussian line overlap thus indicating that no astrospheric CX signal has been detected. The models overlap because the best fit of the data is achieved for a Gaussian line with zero norm, which indicates that adding any additional flux around 0.56 keV in comparison to the one predicted by the stellar model only worsens the fit.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislyakova, K.G., Güdel, M., Koutroumpa, D. et al. X-ray detection of astrospheres around three main-sequence stars and their mass-loss rates. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02222-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing