Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A massive interacting galaxy 510 million years after the Big Bang

This article has been updated

Abstract

James Webb Space Telescope observations have spectroscopically confirmed the existence of galaxies as early as 300 Myr after the Big Bang and with a higher number density than what was expected based on galaxy formation models and Hubble Space Telescope observations. Yet, most sources confirmed spectroscopically so far in the first 500 Myr have rest-frame ultraviolet (UV) luminosities below the characteristic luminosity (\({M}_\mathrm{UV}^{* }\)), limiting the signal-to-noise ratio for investigating substructure. Here we present a high-resolution spectroscopic and spatially resolved study of a bright galaxy (MUV = −21.66 ± 0.03, \(\sim 2{M}_\mathrm{UV}^{* }\)) at a redshift z = 9.3127 ± 0.0002 (510 Myr after the Big Bang) with an estimated stellar mass of \(\left(1.6_{-0.4}^{+0.5}\right)\times 10^{9}\,M_{\odot }\), forming \(1{9}_{-6}^{+5}\) solar masses per year and with a metallicity of about one tenth that of solar. The system has a morphology typically associated with two interacting galaxies, with a two-component main clump of very young stars (age less than 10 Myr) surrounded by an extended stellar population (120 ± 20 Myr old, identified from modelling the NIRSpec spectrum) and an elongated clumpy tidal tail. The observations acquired at high spectral resolution identify oxygen, neon and hydrogen emission lines, as well as the Lyman break, where there is evidence of substantial absorption of Lyα. The [O ii] doublet is resolved spectrally, enabling an estimate of the electron number density and ionization parameter of the interstellar medium and showing higher densities and ionization than in analogues at lower redshifts. We identify evidence of absorption lines (silicon, carbon and iron), with low confidence individual detections but a signal-to-noise ratio larger than 6 when stacked. These absorption features suggest that Lyα is damped by the interstellar and circumgalactic media. Our observations provide evidence of a rapid and efficient build-up of mass and metals in the immediate aftermath of the Big Bang through mergers, demonstrating that there were massive galaxies with several billion stars at early times.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: JWST NIRCam and NIRSpec observations of a galaxy with GLASS ID Gz9p3.
Fig. 2: Census of MUV and stellar mass of high-redshift galaxies.
Fig. 3: Location of Gz9p3 on the mass–metallicity relation.
Fig. 4: 2D colour and physical parameter distribution of Gz9p3.
Fig. 5: Morphology of Gz9p3.

Similar content being viewed by others

Data availability

All data used in this paper are publicly available through the Mikulski Archive for Space Telescopes server with the relevant programme IDs (ERS-1324 for the NIRSpec spectroscopy and DDT-2756 for the NIRCam imaging). The reduced NIRCam imaging utilized in this work from the GLASS collaboration50 is available at https://doi.org/10.17909/kw3c-n857. All other data generated throughout the analysis are available from the corresponding author on request.

Code availability

Our analysis makes use of several publicly available codes. The NIRSpec data were reduced using the msaexp code, which can be found here: https://github.com/gbrammer/msaexp. The data reduction of the NIRCam images were performed with the official STScI JWST pipeline, which can be found here: https://github.com/spacetelescope/jwst. The SED fitting analyses were performed with BAGPIPES, the latest version of which (including the templates used here) is available at https://bagpipes.readthedocs.io/en/latest/. We modelled the observed spectral emission lines using the specutils packages within Python, which can be found at https://specutils.readthedocs.io/en/stable/. We performed aperture photometry on the direct imaging using the photutils packages within Python, which can be found at https://photutils.readthedocs.io/en/stable. Galactic morphological parameters were measured using the GLASS in-house JWSTmorph package, which is publicly available at https://github.com/Anthony96/JWSTmorph.git. All other code generated throughout the analysis is available from the corresponding author on request.

Change history

  • 15 March 2024

    In the version of the article initially published, Extended Data Tables 1 and 2 were displayed as LaTex code. They have been updated, and now appear correctly as tables.

References

  1. Torrey, P. et al. The evolution of the mass–metallicity relation and its scatter in IllustrisTNG. Mon. Not. R. Astron. Soc. 484, 5587–5607 (2019).

    ADS  CAS  Google Scholar 

  2. Smith, R. J., Longmore, S. & Bonnell, I. The simultaneous formation of massive stars and stellar clusters. Mon. Not. R. Astron. Soc. 400, 1775–1784 (2009).

    Article  ADS  Google Scholar 

  3. Fakhouri, O. & Ma, C.-P. The nearly universal merger rate of dark matter haloes in ΛCDM cosmology. Mon. Not. R. Astron. Soc. 386, 577–592 (2008).

    Article  ADS  Google Scholar 

  4. Bouwens, R. J. et al. New determinations of the UV luminosity functions from z ~ 9 to 2 show a remarkable consistency with halo growth and a constant star formation efficiency. Astrophys. J. 162, 47 (2021).

    CAS  Google Scholar 

  5. Hashimoto, T. et al. The onset of star formation 250 million years after the Big Bang. Nature 557, 392–395 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Roberts-Borsani, G. W., Ellis, R. S. & Laporte, N. Interpreting the Spitzer/IRAC colours of 7 ≤ z ≤ 9 galaxies: distinguishing between line emission and starlight using ALMA. Mon. Not. R. Astron. Soc. 497, 3440–3450 (2020).

    Article  ADS  CAS  Google Scholar 

  7. Castellano, M. et al. Early results from GLASS-JWST. III. Galaxy candidates at z ~ 9–15. Astrophys. J. Lett. 938, 15 (2022).

    Article  ADS  Google Scholar 

  8. Naidu, R. P. et al. Two remarkably luminous galaxy candidates at z ≈ 10–12 revealed by JWST. Astrophys. J. Lett. 940, 14 (2022).

    Article  ADS  Google Scholar 

  9. Donnan, C. T. et al. The abundance of z  galaxy candidates in the HUDF using deep JWST NIRCam medium-band imaging. Mon. Not. R. Astron. Soc. 520, 4554–4561 (2023).

  10. Harikane, Y. et al. A comprehensive study of galaxies at z ~ 9–16 found in the early JWST data: ultraviolet luminosity functions and cosmic star formation history at the pre-reionization epoch. Astrophys. J. Suppl. 265, 5 (2023).

    Article  ADS  Google Scholar 

  11. Morishita, T. & Stiavelli, M. Physical characterization of early galaxies in the Webb’s first deep field SMACS J0723.3-7323. Astrophys. J. Lett. 946, L35 (2023).

  12. Bouwens, R. J. et al. Evolution of the UV LF from z ~ 15 to z ~ 8 using new JWST NIRCam medium-band observations over the HUDF/XDF. Mon. Not. R. Astron. Soc. 523, 1036–1055 (2023).

  13. Adams, N. J. et al. Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 field. Mon. Not. R. Astron. Soc. 518, 4755–4766 (2023).

  14. Morishita, T. et al. Early results from GLASS-JWST. XIV. A spectroscopically confirmed protocluster 650 million years after the Big Bang. Astrophys. J. Lett. 947, L24 (2023).

  15. Williams, H. et al. Spectroscopy from Lyman alpha to [O iii] 5007 of a triply imaged magnified galaxy at redshift z = 9.5. Science 380, 416–420 (2023).

  16. Roberts-Borsani, G. et al. The nature of an ultra-faint galaxy in the cosmic dark ages seen with JWST. Nature 618, 480–483 (2023).

  17. Curtis-Lake, E. et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nature. Astron. 7, 622–632 (2023).

  18. Tang, M. et al. JWST/NIRSpec spectroscopy of z = 7–9 star forming galaxies with CEERS: new insight into bright Lyα emitters in ionized bubbles. Mon. Not. R. Astron. Soc. 526, 1657–1686 (2023).

  19. Mascia, S. et al. Closing in on the sources of cosmic reionization: first results from the GLASS-JWST program. Astron. Astrophys. 672, A155 (2023).

  20. Fujimoto, S. et al. CEERS spectroscopic confirmation of NIRCam-selected z > 8 galaxy candidates with JWST/NIRSpec: initial characterization of their properties. Astrophys. J. Lett. 949, L25 (2023).

  21. Wang, X. et al. A strong He ii λ1640 emitter with extremely blue UV spectral slope at z = 8.16: presence of Pop III stars? Preprint at https://arxiv.org/abs/2212.04476 (2022).

  22. Cameron, A.J. et al. JADES: probing interstellar medium conditions at z ~ 5.5 − 9.5 with ultra-deep JWST/NIRSpec spectroscopy. Astron. Astrophys. 677, A115 (2023).

  23. Bunker, A.J. et al. JADES NIRSpec spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy. Astron. Astrophys. 677, A88 (2023).

  24. Hsiao, T.Y.-Y. et al. JWST NIRSpec spectroscopy of the triply-lensed z = 10.17 galaxy MACS0647–JD. Preprint at https://arxiv.org/abs/2305.03042 (2023).

  25. Arrabal Haro, P. et al. Confirmation and refutation of very luminous galaxies in the early Universe. Nature 622, 707–711 (2023).

  26. Arrabal Haro, P. et al. Spectroscopic confirmation of CEERS NIRCam-selected galaxies at z = 8–10. Astrophys. J. Lett. 951, 22 (2023).

    Article  ADS  Google Scholar 

  27. Harikane, Y. et al. Pure spectroscopic constraints on UV luminosity functions and cosmic star formation history from 25 galaxies at zspec = 8.61–13.20 confirmed with JWST/NIRSpec. Astrophys. J. 960, 56 (2024).

  28. Mason, C. A., Trenti, M. & Treu, T. The brightest galaxies at cosmic dawn. Mon. Not. R. Astron. Soc. 521, 497–503 (2023).

  29. Wilkins, S. M. et al. First light and reionization epoch simulations (FLARES) V: the redshift frontier. Mon. Not. R. Astron. Soc. 519, 3118–3128 (2023).

  30. Keller, B. W., Munshi, F., Trebitsch, M. & Tremmel, M. Can cosmological simulations reproduce the spectroscopically confirmed galaxies seen at z ≥ 10? Astrophys. J. Lett. 943, 28 (2023).

    Article  ADS  Google Scholar 

  31. McCaffrey, J., Hardin, S., Wise, J. & Regan, J. No tension: JWST galaxies at z > 10 consistent with cosmological simulations. Open J. Astrophys. 6 (2023).

  32. Katz, H. et al. First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O iii] λ4363/[O iii] λ5007. Mon. Not. R. Astron. Soc. 518, 592–603 (2023).

    Article  ADS  CAS  Google Scholar 

  33. Curti, M. et al. The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z ~ 8. Mon. Not. R. Astron. Soc. 518, 425–438 (2023).

    Article  ADS  CAS  Google Scholar 

  34. Hsiao, T.Y.-Y. et al. JWST reveals a possible z ~ 11 galaxy merger in triply lensed MACS0647–JD. Astrophys. J. Lett. 949, L34 (2023).

  35. Endsley, R. et al. A JWST/NIRCam study of key contributors to reionization: the star-forming and ionizing properties of UV-faint z ~ 7–8 galaxies. Mon. Not. R. Astron. Soc. 523, 2312–2330 (2023).

  36. Sanders, R. L., Shapley, A. E., Topping, M. W., Reddy, N. A. & Brammer, G. B. Excitation and ionization properties of star-forming galaxies at z = 2.0–9.3 with JWST/NIRSpec. Astrophys. J. 955, 54 (2023).

  37. Cardamone, C. et al. Galaxy zoo green peas: discovery of a class of compact extremely star-forming galaxies. Mon. Not. R. Astron. Soc. 399, 1191–1205 (2009).

    Article  ADS  CAS  Google Scholar 

  38. Yang, H., Malhotra, S., Rhoads, J. E. & Wang, J. Blueberry galaxies: the lowest mass young starbursts. Astrophys. J. 847, 38 (2017).

    Article  ADS  Google Scholar 

  39. Henry, A., Scarlata, C., Martin, C. L. & Erb, D. Lyα emission from green peas: the role of circumgalactic gas density, covering, and kinematics. Astrophys. J. 809, 19 (2015).

    Article  ADS  Google Scholar 

  40. Jaskot, A. E. & Oey, M. S. The origin and optical depth of ionizing radiation in the ‘green pea’ galaxies. Astrophys. J. 766, 91 (2013).

    Article  ADS  Google Scholar 

  41. Tang, M. et al. Lyman-alpha spectroscopy of extreme [O iii] emitting galaxies at z = 2–3: implications for Lyα visibility and LyC leakage at z > 6. Mon. Not. R. Astron. Soc. 503, 4105–4117 (2021).

    Article  ADS  CAS  Google Scholar 

  42. Sanders, R. L. et al. The MOSDEF survey: direct-method metallicities and ISM conditions at z ~ 1.5–3.5. Mon. Not. R. Astron. Soc. 491, 1427–1455 (2020).

    Article  ADS  CAS  Google Scholar 

  43. Sanders, R. L. et al. The MOSDEF survey: electron density and ionization parameter at z ~ 2.3. Astrophys. J. 816, 23 (2016).

    Article  ADS  Google Scholar 

  44. Wang, X. et al. Early results from GLASS-JWST. IV. Spatially resolved metallicity in a low-mass z ~ 3 galaxy with NIRISS. Astrophys. J. Lett. 938, 16 (2022).

    Article  ADS  Google Scholar 

  45. Chen, Z. et al. JWST/NIRCam observations of stars and Hii regions in z = 6–8 galaxies: properties of star-forming complexes on 150 pc scales. Mon. Not. R. Astron. Soc. 518, 5607–5619 (2023).

    Article  ADS  CAS  Google Scholar 

  46. Giménez-Arteaga, C. et al. Spatially resolved properties of galaxies at 5 < z < 9 in the SMACS 0723 JWST ERO field. Astrophys. J. 948, 126 (2023).

  47. Castellano, M. et al. Early results from GLASS-JWST. XIX. A high density of bright galaxies at z ≈ 10 in the A2744 region. Astrophys. J. Lett. 948, 14 (2023).

    Article  ADS  Google Scholar 

  48. Treu, T. et al. The GLASS-JWST Early Release Science program. I. Survey design and release plans. Astrophys. J. 935, 110 (2022).

    Article  ADS  Google Scholar 

  49. Bergamini, P. et al. New high-precision strong lensing modeling of Abell 2744. Preparing for JWST observations. Astron. Astrophys. 670, A60 (2023).

  50. Paris, D. et al. The GLASS-JWST Early Release Science program. II. Stage I release of NIRCam imaging and catalogs in the Abell 2744 region. Astrophys. J. 952, 20 (2023).

  51. Labbe, I. et al. A population of red candidate massive galaxies ~ 600 Myr after the Big Bang. Nature 616, 266–269 (2023).

  52. Witstok, J. et al. Assessing the sources of reionization: a spectroscopic case study of a 30× lensed galaxy at z ~ 5 with Lyα, C iv, Mg ii, and [Ne iii]. Mon. Not. R. Astron. Soc. 508, 1686–1700 (2021).

    Article  ADS  CAS  Google Scholar 

  53. Bian, F., Kewley, L. J. & Dopita, M. A. ‘Direct’ gas-phase metallicity in local analogs of high-redshift galaxies: empirical metallicity calibrations for high-redshift star-forming galaxies. Astrophys. J. 859, 175 (2018).

    Article  ADS  Google Scholar 

  54. Shi, F., Zhao, G. & Liang, Y. C. [Ne iii]/[O ii] as an oxygen abundance indicator in the H ii regions and H ii galaxies. Astron. Astrophys. 475, 409–414 (2007).

    Article  ADS  CAS  Google Scholar 

  55. Maiolino, R. et al. AMAZE. I. The evolution of the mass–metallicity relation at z > 3. Astron. Astrophys. 488, 463–479 (2008).

    Article  ADS  Google Scholar 

  56. Jones, T., Martin, C. & Cooper, M. C. Temperature-based metallicity measurements at z = 0.8: direct calibration of strong-line diagnostics at intermediate redshift. Astrophys. J. 813, 126 (2015).

    Article  ADS  Google Scholar 

  57. Nakajima, K. et al. JWST census for the mass–metallicity star-formation relations at z = 4–10 with self-consistent flux calibration and the proper metallicity calibrators. Astrophys. J. Suppl. 269, 33 (2023).

  58. Sanders, R. L. et al. The MOSDEF survey: the evolution of the mass–metallicity relation from z = 0 to z ~ 3.3. Astrophys. J. 914, 19 (2021).

    Article  ADS  CAS  Google Scholar 

  59. Mason, C. A., Trenti, M. & Treu, T. The galaxy UV luminosity function before the epoch of reionization. Astrophys. J. 813, 21 (2015).

    Article  ADS  Google Scholar 

  60. Padoan, P. & Nordlund, Å. The stellar initial mass function from turbulent fragmentation. Astrophys. J. 576, 870–879 (2002).

    Article  ADS  CAS  Google Scholar 

  61. Krumholz, M. R. & McKee, C. F. A general theory of turbulence-regulated star formation, from spirals to ultraluminous infrared galaxies. Astrophys. J. 630, 250–268 (2005).

    Article  ADS  Google Scholar 

  62. Umeda, H. et al. JWST measurements of neutral hydrogen fractions and ionized bubble sizes at z = 7–12 obtained with Lyα damping wing absorptions in 26 bright continuum galaxies. Preprint at https://arxiv.org/abs/2306.00487 (2023).

  63. Heintz, K. E. et al. Extreme damped Lyman-α absorption in young star-forming galaxies at z = 9–11. Preprint at https://arxiv.org/abs/2306.00647 (2023).

  64. Miralda-Escudé, J. Reionization of the intergalactic medium and the damping wing of the Gunn–Peterson trough. Astrophys. J. 501, 15–22 (1998).

    Article  ADS  Google Scholar 

  65. Mason, C. A. & Gronke, M. Measuring the properties of reionized bubbles with resolved Lyα spectra. Mon. Not. R. Astron. Soc. 499, 1395–1405 (2020).

    Article  ADS  CAS  Google Scholar 

  66. Jones, T., Stark, D. P. & Ellis, R. S. Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies. III. The mean ultraviolet spectrum at z  4. Astrophys. J. 751, 51 (2012).

    Article  ADS  Google Scholar 

  67. Leethochawalit, N., Jones, T. A., Ellis, R. S., Stark, D. P. & Zitrin, A. Absorption-line spectroscopy of gravitationally lensed galaxies: further constraints on the escape fraction of ionizing photons at high redshift. Astrophys. J. 831, 152 (2016).

    Article  ADS  Google Scholar 

  68. Pahl, A. J. et al. The redshift evolution of rest-UV spectroscopic properties to z ~ 5. Mon. Not. R. Astron. Soc. 493, 3194–3211 (2020).

    Article  ADS  CAS  Google Scholar 

  69. Saldana-Lopez, A. et al. The low-redshift Lyman continuum survey. Unveiling the ISM properties of low-z Lyman-continuum emitters. Astron. Astrophys. 663, 59 (2022).

    Article  Google Scholar 

  70. Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    Article  ADS  CAS  Google Scholar 

  71. Lotz, J. M., Jonsson, P., Cox, T. J. & Primack, J. R. Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers. Mon. Not. R. Astron. Soc. 391, 1137–1162 (2008).

    Article  ADS  Google Scholar 

  72. Haslbauer, M., Kroupa, P., Zonoozi, A. H. & Haghi, H. Has JWST already falsified dark-matter-driven galaxy formation? Astrophys. J. Lett. 939, 31 (2022).

    Article  ADS  Google Scholar 

  73. Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    Article  ADS  CAS  Google Scholar 

  74. Rieke, M. J. et al. Performance of NIRCam on JWST in flight. Publ. Astron. Soc. Pac. 135, 028001 (2023).

    Article  ADS  Google Scholar 

  75. Jakobsen, P. et al. The near-infrared spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, 80 (2022).

    Article  Google Scholar 

  76. Ferruit, P. et al. The near-infrared spectrograph (NIRSpec) on the James Webb Space Telescope. II. Multi-object spectroscopy (MOS). Astron. Astrophys. 661, 81 (2022).

    Article  Google Scholar 

  77. Roberts-Borsani, G. et al. Early results from GLASS-JWST. I: confirmation of lensed z 7 Lyman-break galaxies behind the Abell 2744 cluster With NIRISS. Astrophys. J. Lett. 938, L13 (2022).

  78. Castellano, M. et al. First observational support for overlapping reionized bubbles generated by a galaxy overdensity. Astrophys. J. Lett. 818, 3 (2016).

    Article  ADS  Google Scholar 

  79. Bezanson, R. et al. The JWST UNCOVER Treasury survey: ultradeep NIRSpec and NIRCam observations before the epoch of reionization. Preprint at https://arxiv.org/abs/2212.04026 (2022).

  80. Fujimoto, S. et al. UNCOVER: a NIRSpec census of lensed galaxies at z = 8.50–13.08 probing a high AGN fraction and ionized bubbles in the shadow. Preprint at https://arxiv.org/abs/2308.11609 (2023).

  81. Bergamini, P. et al. The GLASS-JWST Early Release Science program. III. Strong-lensing model of Abell 2744 and its infalling regions. Astrophys. J. 952, 84 (2023).

    Article  ADS  Google Scholar 

  82. Leethochawalit, N., Roberts-Borsani, G., Morishita, T., Trenti, M. & Treu, T. The UV luminosity functions of bright z > 8 galaxies: determination from 0.41 deg2 of HST observations along ~300 independent sightlines. Mon. Not. R. Astron. Soc. 524, 5454–5467 (2023).

  83. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article  ADS  Google Scholar 

  84. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  CAS  Google Scholar 

  85. Nagao, T., Maiolino, R. & Marconi, A. Gas metallicity diagnostics in star-forming galaxies. Astron. Astrophys. 459, 85–101 (2006).

    Article  ADS  CAS  Google Scholar 

  86. Pérez-Montero, E., Hägele, G. F., Contini, T. & Díaz, Á. I. Neon and argon optical emission lines in ionized gaseous nebulae: implications and applications. Mon. Not. R. Astron. Soc. 381, 125–135 (2007).

    Article  ADS  Google Scholar 

  87. Jeong, M.-S. et al. The MOSDEF survey: neon as a probe of ISM physical conditions at high redshift. Astrophys. J. Lett. 902, 16 (2020).

    Article  ADS  Google Scholar 

  88. Levesque, E. M. & Richardson, M. L. A. [Ne iii]/[O ii] as an ionization parameter diagnostic in star-forming galaxies. Astrophys. J. 780, 100 (2014).

    Article  ADS  Google Scholar 

  89. Nakajima, K. et al. EMPRESS. V. Metallicity diagnostics of galaxies over 12 + log(O/H) = 6.9–8.9 established by a local galaxy census: preparing for JWST spectroscopy. Astrophys. J. Suppl. 262, 3 (2022).

    Article  ADS  Google Scholar 

  90. Sanders, R. L. et al. The MOSDEF survey: detection of [O iii]λ4363 and the direct-method oxygen abundance of a star-forming galaxy at z = 3.08. Astrophys. J. Lett. 825, 23 (2016).

    Article  ADS  Google Scholar 

  91. Pontoppidan, K. M. et al. The JWST early release observations. Astrophys. J. Lett. 936, 14 (2022).

    Article  ADS  Google Scholar 

  92. Paalvast, M. et al. Properties and redshift evolution of star-forming galaxies with high [O iii]/[O ii] ratios with MUSE at 0.28 < z < 0.85. Astron. Astrophys. 618, 40 (2018).

    Article  Google Scholar 

  93. Strom, A. L. et al. Nebular emission line ratios in z = 2–3 star-forming galaxies with KBSS-MOSFIRE: exploring the impact of ionization, excitation, and nitrogen-to-oxygen ratio. Astrophys. J. 836, 164 (2017).

    Article  ADS  Google Scholar 

  94. Zeimann, G. R. et al. Hubble Space Telescope emission-line galaxies at z ~ 2: the mystery of neon. Astrophys. J. 798, 29 (2015).

    Article  ADS  Google Scholar 

  95. York, D. G. et al. The Sloan Digital Sky Survey: technical summary. Astron. J. 120, 1579–1587 (2000).

    Article  ADS  Google Scholar 

  96. Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. 182, 543–558 (2009).

    Article  ADS  Google Scholar 

  97. Runco, J. N. et al. The MOSDEF survey: a comprehensive analysis of the rest-optical emission-line properties of z ~ 2.3 star-forming galaxies. Mon. Not. R. Astron. Soc. 502, 2600–2614 (2021).

    Article  ADS  CAS  Google Scholar 

  98. Finkelstein, S .L. et al. CEERS key paper I: an early look into the first 500 Myr of galaxy formation with JWST. Astrophys. J. Lett. 946, L13 (2023).

  99. Eisenstein, D. J. et al. Overview of the JWST advanced deep extragalactic survey (JADES). Preprint at https://arxiv.org/abs/2306.02465 (2023).

  100. Speagle, J. S., Steinhardt, C. L., Capak, P. L. & Silverman, J. D. A highly consistent framework for the evolution of the star-forming ‘main sequence’ from z ~ 0–6. Astrophys. J. Suppl. Ser. 214, 15 (2014).

  101. Mármol-Queraltó, E. et al. The evolution of the equivalent width of the Hα emission line and specific star formation rate in star-forming galaxies at 1 < z < 5. Mon. Not. R. Astron. Soc. 460, 3587–3597 (2016).

    Article  ADS  Google Scholar 

  102. Dong, X.-B. et al. Eddington ratio governs the equivalent width of Mg ii emission line in active galactic nuclei. Astrophys. J. Lett. 703, L1 (2009).

    Article  ADS  Google Scholar 

  103. Du, X. et al. The redshift evolution of rest-UV spectroscopic properties in Lyman-break galaxies at z ~ 2–4. Astrophys. J. 860, 75 (2018).

    Article  ADS  Google Scholar 

  104. Shapley, A. E., Steidel, C. C., Pettini, M. & Adelberger, K. L. Rest-frame ultraviolet spectra of z ~ 3 Lyman break galaxies. Astrophys. J. 588, 65–89 (2003).

    Article  ADS  Google Scholar 

  105. Fontana, A. et al. Photometric redshifts and selection of high-redshift galaxies in the NTT and Hubble deep fields. Astron. J. 120, 2206–2219 (2000).

    Article  ADS  Google Scholar 

  106. Leethochawalit, N. et al. Early results from GLASS-JWST. X. Rest-frame UV-optical properties of galaxies at 7 < z < 9. Astrophys. J. Lett. 942, 26 (2023).

    Article  ADS  Google Scholar 

  107. Santini, P. et al. Early results from GLASS-JWST. XI. Stellar masses and mass-to-light ratio of z > 7 galaxies. Astrophys. J. Lett. 942, L27 (2023).

  108. Kroupa, P. & Boily, C. M. On the mass function of star clusters. Mon. Not. R. Astron. Soc. 336, 1188–1194 (2002).

    Article  ADS  Google Scholar 

  109. Eldridge, J. J. & Stanway, E. R. Spectral population synthesis including massive binaries. Mon. Not. R. Astron. Soc. 400, 1019–1028 (2009).

    Article  ADS  Google Scholar 

  110. Ferland, G. J. et al. The 2017 release cloudy. Revista Mexicana de Astronomia y Astrofisica 53, 385–438 (2017).

    ADS  CAS  Google Scholar 

  111. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article  ADS  Google Scholar 

  112. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article  ADS  Google Scholar 

  113. Charlot, S. & Fall, S. M. A simple model for the absorption of starlight by dust in galaxies. Astrophys. J. 539, 718–731 (2000).

    Article  ADS  CAS  Google Scholar 

  114. Andrews, B. H. & Martini, P. The mass–metallicity relation with the direct method on stacked spectra of SDSS galaxies. Astrophys. J. 765, 140 (2013).

    Article  ADS  Google Scholar 

  115. Dunlop, J. S. et al. The UV continua and inferred stellar populations of galaxies at z = 7–9 revealed by the Hubble ultra-deep field 2012 campaign. Mon. Not. R. Astron. Soc. 432, 3520–3533 (2013).

    Article  ADS  Google Scholar 

  116. Vulcani, B. et al. GASP. XXXIII. The ability of spatially resolved data to distinguish among the different physical mechanisms affecting galaxies in low-density environments. Astrophys. J. 914, 27 (2021).

    Article  ADS  CAS  Google Scholar 

  117. Springel, V. Modelling star formation and feedback in simulations of interacting galaxies. Mon. Not. R. Astron. Soc. 312, 859–879 (2000).

    Article  ADS  Google Scholar 

  118. Barnes, J. E. Formation of gas discs in merging galaxies. Mon. Not. R. Astron. Soc. 333, 481–494 (2002).

    Article  ADS  Google Scholar 

  119. Naab, T., Jesseit, R. & Burkert, A. The influence of gas on the structure of merger remnants. Mon. Not. R. Astron. Soc. 372, 839–852 (2006).

    Article  ADS  Google Scholar 

  120. Benítez-Llambay, A. et al. Dwarf galaxies and the cosmic web. Astrophys. J. Lett. 763, 41 (2013).

    Article  ADS  Google Scholar 

  121. Lotz, J. M., Primack, J. & Madau, P. A new nonparametric approach to galaxy morphological classification. Astron. J. 128, 163–182 (2004).

    Article  ADS  Google Scholar 

  122. Abraham, R. G., van den Bergh, S. & Nair, P. A new approach to galaxy morphology. I. Analysis of the Sloan Digital Sky Survey early data release. Astrophys. J. 588, 218–229 (2003).

    Article  ADS  Google Scholar 

  123. Conselice, C. J., Bershady, M. A., Dickinson, M. & Papovich, C. A direct measurement of major galaxy mergers at z < 3. Astron. J. 126, 1183–1207 (2003).

    Article  ADS  Google Scholar 

  124. Treu, T. et al. Early results from GLASS-JWST. XII. The morphology of galaxies at the epoch of reionization. Astrophys. J. Lett. 942, 28 (2023).

    Article  ADS  Google Scholar 

  125. Calabrò, A. et al. Merger induced clump formation in distant infrared luminous starburst galaxies. Astron. Astrophys. 632, 98 (2019).

    Article  Google Scholar 

  126. Ren, K., Trenti, M. & Mason, C. A. The brightest galaxies at cosmic dawn from scatter in the galaxy luminosity versus halo mass relation. Astrophys. J. 878, 114 (2019).

    Article  ADS  CAS  Google Scholar 

  127. Trenti, M. & Stiavelli, M. Cosmic variance and its effect on the luminosity function determination in deep high-z surveys. Astrophys. J. 676, 767–780 (2008).

    Article  ADS  Google Scholar 

  128. Behroozi, P. S. & Silk, J. A simple technique for predicting high-redshift galaxy evolution. Astrophys. J. 799, 32 (2015).

    Article  ADS  Google Scholar 

  129. Marinacci, F. et al. First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Mon. Not. R. Astron. Soc. 480, 5113–5139 (2018).

    ADS  CAS  Google Scholar 

  130. Pillepich, A. et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 475, 648–675 (2018).

    Article  ADS  CAS  Google Scholar 

  131. Naiman, J. P. et al. First results from the IllustrisTNG simulations: a tale of two elements – chemical evolution of magnesium and europium. Mon. Not. R. Astron. Soc. 477, 1206–1224 (2018).

    Article  ADS  CAS  Google Scholar 

  132. Springel, V. et al. First results from the IllustrisTNG simulations: matter and galaxy clustering. Mon. Not. R. Astron. Soc. 475, 676–698 (2018).

    Article  ADS  CAS  Google Scholar 

  133. Nelson, D. et al. First results from the IllustrisTNG simulations: the galaxy colour bimodality. Mon. Not. R. Astron. Soc. 475, 624–647 (2018).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is based on observations made with JWST, which is run jointly by NASA, the European Space Agency and the Canadian Space Agency. The data were obtained from the Mikulski Archive for Space Telescopes at STScI, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programmes JWST-ERS-1324 and JWST-DDT-2756. We acknowledge financial support from NASA (Grant No. JWST-ERS-1324). K.B., M.T., B.M. and N.D. acknowledge support from the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. K.G. and T.N. acknowledge support from Australian Research Council Laureate Fellowship FL180100060. B.M. acknowledges support from the Australian Government Research Training Program Scholarships and the Jean E Laby Foundation. We acknowledge financial support through grants PRIN-MIUR 2017WSCC32 and 2020SKSTHZ. M.B. acknowledges support from the European Research Council (Grant No. FIRSTLIGHT) and from the Slovenian national research agency (Grant Nos. N1-0238 and P1-0188). C.A.M. acknowledges support from Villum Fonden (Grant No. 37459) and the Carlsberg Foundation (Grant No. CF22-1322). The Cosmic Dawn Center is funded by the Danish National Research Foundation (Grant No. DNRF140). We acknowledge support from the Italian National Institute for Astrophysics (INAF; Large Grant 2022 for Extragalactic Surveys with JWST, PI Pentericci). E.V. acknowledges support from the INAF (GO Grant 2022 for The revolution is around the corner: JWST will probe globular cluster precursors and Population III stellar clusters at cosmic dawn). M.C. acknowledges support from INAF (a mini grant for Reionization and fundamental cosmology with high-redshift galaxies). P.S. acknowledges an INAF mini grant 2022 for The evolution of passive galaxies through cosmic time. D.M. acknowledges financial support from programme HST-GO-17231, provided through a grant from STScI under NASA contract NAS5-26555.

Author information

Authors and Affiliations

Authors

Contributions

K.B. identified the emission lines from the NIRSpec data, led the overall data analysis activities, produced all the figures and was primarily responsible for writing the Methods. M.T. provided advice on the data analysis and on its physical interpretation, carried out the comparison to theoretical modelling, contributed associated text in Methods, and was primarily responsible for writing the abstract and main text sections. N.L. led the SED fitting and contributed associated text in Methods. A.C. led the clumping analysis and contributed associated text in Methods. B.M. led the comparison to hydrodynamical simulations and contributed associated text in Methods. G.R.-B. led the NIRSpec data reduction. N.D. led the Lyman break modelling. L.Y. led the light profile fitting from imaging data. T.T. led the GLASS and Early Science Release survey conception, design and execution as the principal investigator of the programme and contributed advice on preparation of this paper. T.J. and A.H. contributed to the physical interpretation of the absorption lines. A.H., C.A.M., T.M., T.N. and X.W. contributed to the NIRSpec data reduction and to the development of the NIRSpec pipeline. A.F., E.M., C.A.M. and D.P. contributed to the NIRSpec data reduction and to the development of the NIRCam pipeline. All authors contributed comments during the research activities and paper preparation.

Corresponding authors

Correspondence to Kristan Boyett or Michele Trenti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Pablo Arrabal Haro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 NIRSpec 2D spectrum of Gz9p3.

Top: 2D observed-frame high resolution R ~ 2700 spectrum in the f100lp/g140h, f170lp/g235h and f290lp/g395h filter-disperser configurations. Orange and white horizontal lines show the 1σ extraction trace for the optimal and narrow kernels. In the 2D extraction, the relative proximity of the dispersed light from other sources can be seen. These spectra are not associated with an additional source within our shutter but rather with targets in separate shutters in the NIRSpec MSA with a similar row number. The narrow kernel is introduced to ensure no contamination from the dispersed light of close proximity spectra is included for the fitting of the Lyman break. Bottom: the 1D extracted spectrum (as in Fig. 1). We mark the location of the Lyman-break and detected emission lines in red in both the 1D and 2D spectra. The wavelength region contaminated by the additional source is marked in grey in the 1D.

Extended Data Fig. 2 NIRSpec constraints on the Lyman break of Gz9p3.

We present a best fit and 95% confidence interval of \({z}_{break}=9.3{5}_{-0.05}^{+0.01}\) using the narrow 1D extraction to minimize potential contamination (20px binning presented in blue at the midpoint of each bin, and raw data in gray). The orange region covers the 95% confidence interval with the solid black line showing the best fit model. The dashed lines shows the model fit using zspec = 9.313 derived from the emission lines. The independent best-fit of the Lyman break is consistent with the emission-line spectroscopic redshift solution.

Extended Data Fig. 3 Spectral energy distribution fit to the spectrum and photometry of the central region of Gz9p3.

Scaled-spectrum and aperture photometry of the main component of Gz9p3 with best fit BAGPIPES (Spec+Phot) model overlaid (red) on top of the spectrum (both binned at 20px) and the photometric flux densities (where the error bars indicate the filter width and uncertainty on the broadband imaging flux density). Wavelength regions affected by contamination are masked and shaded in gray. Each spectrum has been corrected for slit-losses to match the aperture photometry of the main component (see Extended Data Figure 5) in the F150W, F200W and F356W bands respectively.

Extended Data Fig. 4 UV absorption features in the high-resolution spectroscopy of Gz9p3.

Top panel: Stack of region ± 3000kms−1 centered on common UV-absorption lines (SiIIλ1260, 1304, OIλ1302, CIIλ1335, FeIIλ2344, 2374, 2382). The orange filled region highlights the − 500: 500kms−1 window which shows a series of absorption features exhibiting a 40% reduction flux compared to the mean stellar continuum (red line) at a 6.3σ significance. Bottom panels: the individual SiIIλ1260, CIIλ1335 and FeIIλ2344 absorption features shown over the same velocity window.

Extended Data Fig. 5 Spectral energy distribution for Gz9p3 from integrated light in key regions.

Left Panel: Overlaid onto the F277W direct imaging for the galaxy, white dashed lines show the 5σ and 20σ F277W contours. Three apertures are placed to approximately trace these contours. These include an aperture (green) over the tail tracing the 5σ contour of a clump and an inner and an outer aperture over the main component tracing the 20σ and 5σ contours (red, blue). Right Panel: Photometry and BAGPIPES SED fit (16th − 84th percentile shown by shaded region) for the full galaxy (orange, see Extended Data Table 1) and key regions from the left panel (blue = Inner, red = the annulus region created between the inner and outer apertures on the main source, and green = Tail, which we scale by × 4 to aid the viewer). Error bars derive from uncertainty on the broadband imaging flux density and the SED fitting.

Extended Data Table 1 Galaxy properties for regions within Gz9p3
Extended Data Table 2 Observed broadband flux densities

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyett, K., Trenti, M., Leethochawalit, N. et al. A massive interacting galaxy 510 million years after the Big Bang. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02218-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02218-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing