Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Less than one weight percent of graphite on the surface of Mercury

Abstract

The surface of Mercury is enriched in carbon compared with the other terrestrial bodies. Up to 4 wt% of carbon in the form of graphite has been invoked to explain its mysteriously low surface reflectance. However, the exact abundance and phase of carbon on Mercury were loosely constrained by orbital observations. Here we show that the oldest and darkest colour units on Mercury, comprising low-reflectance materials, consist of two spatially coherent subunits that do and do not have spectral characteristics attributed to graphite enrichment, respectively. We find from spectral modelling that a combination of less than 1 wt% of microcrystalline graphite and similar amounts of metallic iron is adequate for explaining the overall reflectances of various colour units on Mercury. Our results indicate that most carbon on Mercury may occur in forms other than intergrain graphite and that carbon did not entirely drain from the mantle during magma ocean crystallization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution and reflectance spectra of the two types of LRM.
Fig. 2: Occurrence of LRMBD600− (green) on Mercury and its context relationship with LRMBD600+ (translucent yellow).
Fig. 3: Observed (dashed curves) and modelled (solid curves with the same colour) reflectance spectra for various colour units on Mercury.

Similar content being viewed by others

Data availability

The shapefiles of global LRM and BD600 maps on Mercury are available in the Zenodo data release60. The MDIS global eight-band colour and monochrome mosaics are available at https://messenger.jhuapl.edu/Explore/Images.html#global-mosaics. The spectrum of graphite in the RELAB sample CASC80 is available at http://www.planetary.brown.edu/relab/.

Code availability

The codes used for analyses and figures are available in the Zenodo data release60.

References

  1. Solomon, S. C. et al. The MESSENGER mission to Mercury: scientific objectives and implementation. Planet. Space Sci. 49, 1445–1465 (2001).

    ADS  Google Scholar 

  2. Hauck, S. A. et al. The curious case of Mercury’s internal structure. J. Geophys. Res. Planets 118, 1204–1220 (2013).

    ADS  CAS  Google Scholar 

  3. Lawrence, D. J. et al. Compositional terranes on Mercury: information from fast neutrons. Icarus 281, 32–45 (2017).

    ADS  CAS  Google Scholar 

  4. McCoy, T. J., Peplowski, P. N., McCubbin, F. M. & Weider, S. Z. in Mercury: The View After MESSENGER (eds Solomon S. C., Nittler L. R. & Anderson B.) 176–190 (Cambridge Univ. Press, 2018).

  5. Zolotov, M. et al. The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. Planets 118, 138–146 (2013).

    ADS  CAS  Google Scholar 

  6. Nittler, L. R. et al. The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science 333, 1847–1850 (2011).

    ADS  CAS  PubMed  Google Scholar 

  7. Robinson, M. S. et al. Reflectance and color variations on Mercury: regolith processes and compositional heterogeneity. Science 321, 66–69 (2008).

    ADS  CAS  PubMed  Google Scholar 

  8. Braden, S. E. & Robinson, M. S. Relative rates of optical maturation of regolith on Mercury and the Moon. J. Geophys. Res. Planets 118, 1903–1914 (2013).

    ADS  CAS  Google Scholar 

  9. Izenberg, N. R. et al. The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus 228, 364–374 (2014).

    ADS  CAS  Google Scholar 

  10. Murchie, S. L. et al. Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: evidence for the origins of plains units and low-reflectance material. Icarus 254, 287–305 (2015).

    ADS  CAS  Google Scholar 

  11. Riner, M. A. et al. Mercury surface composition: integrating petrologic modeling and remote sensing data to place constraints on FeO abundance. Icarus 209, 301–313 (2010).

    ADS  CAS  Google Scholar 

  12. Weider, S. Z. et al. Variations in the abundance of iron on Mercury’s surface from MESSENGER X-ray spectrometer observations. Icarus 235, 170–186 (2014).

    ADS  CAS  Google Scholar 

  13. Weider, S. Z. et al. Evidence of geochemical terranes on Mercury: global mapping of major elements with MESSENGER’s X-ray spectrometer. Earth Planet. Sci. Lett. 416, 109–120 (2015).

    ADS  CAS  Google Scholar 

  14. Peplowski, P. N. et al. Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nat. Geosci. 9, 273–276 (2016).

    ADS  CAS  Google Scholar 

  15. Van der Kaaden, K. E. & McCubbin, F. M. Exotic crust formation on Mercury: consequences of a shallow, FeO-poor mantle. J. Geophys. Res. Planets 120, 195–209 (2015).

    ADS  Google Scholar 

  16. Van der Kaaden, K. E., McCubbin, F. M., Turner, A. A. & Ross, D. K. Constraints on the abundances of carbon and silicon in Mercury’s core from experiments in the Fe‐Si‐C system. J. Geophys. Res. Planets 125, e2019JE006239 (2020).

    ADS  Google Scholar 

  17. Miozzi, F. et al. The Fe-Si-C system at extreme PT conditions: a possible core crystallization pathway for reduced planets. Geochim. Cosmochim. Acta 322, 129–142 (2022).

    ADS  CAS  Google Scholar 

  18. Klima, R. L. et al. Global distribution and spectral properties of low-reflectance material on Mercury. Geophys. Res. Lett. 45, 2945–2953 (2018).

    ADS  CAS  Google Scholar 

  19. Denevi, B. W., Ernst, C. M., Prockter L. M. & Robinson, M. S. in Mercury: The View After MESSENGER (eds Solomon S. C., Nittler L. R. & Anderson B.) 144–175 (Cambridge Univ. Press, 2018).

  20. Rivera-Valentin, E. G. & Barr, A. C. Impact-induced compositional variations on Mercury. Earth Planet. Sci. Lett. 391, 234–242 (2014).

    ADS  CAS  Google Scholar 

  21. Bruck Syal, M., Schultz, P. H. & Riner, M. A. Darkening of Mercury’s surface by cometary carbon. Nat. Geosci. 8, 352–356 (2015).

    ADS  Google Scholar 

  22. Weider, S. Z. et al. Evidence from MESSENGER for sulfur‐ and carbon‐driven explosive volcanism on Mercury. Geophys. Res. Lett. 43, 3653–3661 (2016).

    ADS  CAS  Google Scholar 

  23. Thompson, M. S., Vander Kaaden, K. E., Loeffler, M. J. & McCubbin F. M. Understanding the space weathering of Mercury through laboratory experiments. In Proc. 52nd Lunar and Planetary Science Conference 2548 (Lunar and Planetary Institute, 2021).

  24. Xiao, Z. et al. Recent dark pyroclastic deposits on Mercury. Geophys. Res. Lett. 48, e2021GL092532 (2021).

    ADS  Google Scholar 

  25. Denevi, B. W. et al. The evolution of Mercury’s crust: a global perspective from MESSENGER. Science 324, 613–618 (2009).

    ADS  CAS  PubMed  Google Scholar 

  26. Wang, Y., Xiao, Z. & Xu, R. Multiple mantle sources of high‐magnesium terranes on Mercury. J. Geophys. Res. Planets 127, e2022JE007218 (2022).

    ADS  CAS  Google Scholar 

  27. Ernst, C. M. et al. Exposure of spectrally distinct material by impact craters on Mercury: implications for global stratigraphy. Icarus 209, 210–223 (2010).

    ADS  CAS  Google Scholar 

  28. Hapke, B. Space weathering from Mercury to the asteroid belt. J. Geophys. Res. 106, 10,039–10,073 (2001).

    ADS  CAS  Google Scholar 

  29. Lucey, P. G. & Riner, M. A. The optical effects of small iron particles that darken but do not redden: evidence of intense space weathering on Mercury. Icarus 212, 451–462 (2011).

    ADS  CAS  Google Scholar 

  30. Trang, D., Lucey, P. G. & Izenberg, N. R. Radiative transfer modeling of MESSENGER VIRS spectra: detection and mapping of submicroscopic iron and carbon. Icarus 293, 206–217 (2017).

    ADS  CAS  Google Scholar 

  31. Denevi, B. W. et al. Calibration, projection, and final image products of MESSENGER’s Mercury Dual Imaging System. Space Sci. Rev. 214, 2 (2018).

    ADS  Google Scholar 

  32. Warell, J. et al. Constraints on Mercury’s surface composition from MESSENGER and ground-based spectroscopy. Icarus 209, 138–163 (2010).

    ADS  CAS  Google Scholar 

  33. Starukhina, L. V. & Shkuratov, Y. G. A model for ion bombardment-induced organic synthesis on carbon-bearing surfaces in cosmic space. Icarus 113, 442–449 (1995).

    ADS  CAS  Google Scholar 

  34. Lucey, P. G. & Noble, S. K. Experimental test of a radiative transfer model of the optical effects of space weathering. Icarus 197, 348–353 (2008).

    ADS  Google Scholar 

  35. Trang D. et al. Space weathering of graphite: application to Mercury. In Proc. 49th Lunar and Planetary Science Conference 2083 (Lunar and Planetary Institute, 2018).

  36. Hendrix, A. R. & Vilas, F. C‐complex asteroids: UV‐visible spectral characteristics and implications for space weathering effects. Geophys. Res. Lett. 46, 14307–14317 (2019).

    ADS  Google Scholar 

  37. Moore, C. B. & Lewis, C. F. The distribution of total carbon content in enstatite chondrites. Earth Planet. Sci. Lett. 1, 376–378 (1966).

    ADS  CAS  Google Scholar 

  38. Rubin, A. E. Igneous graphite in enstatite chondrites. Mineral. Mag. 61, 699–703 (1997).

    CAS  Google Scholar 

  39. McCoy, T. J., Dickinson, T. L. & Lofgren, G. E. Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci. 34, 735–746 (1999).

    ADS  CAS  Google Scholar 

  40. Anders, E. Chemical compositions of the Moon, Earth, and eucrite parent body. Philos. Trans. R. Soc. A 285, 23–40 (1977).

    ADS  CAS  Google Scholar 

  41. Morgan, J. W. & Anders, E. Chemical composition of Mars. Geochim. Cosmochim. Acta 43, 1601–1610 (1979).

    ADS  CAS  Google Scholar 

  42. Peplowski, P. N. et al. Constraints on the abundance of carbon in near-surface materials on Mercury: results from the MESSENGER gamma-ray spectrometer. Planet. Space Sci. 108, 98–107 (2015).

    ADS  CAS  Google Scholar 

  43. Maturilli, A., Shiryaev, A. A., Kulakova, I. I. & Helbert, J. Infrared reflectance and emissivity spectra of nanodiamonds. Spectrosc. Lett. 47, 446–450 (2014).

    ADS  CAS  Google Scholar 

  44. McClintock, W. E. et al. Spectroscopic observations of Mercury’s surface reflectance during MESSENGER’s first Mercury flyby. Science 321, 62–65 (2008).

    ADS  CAS  PubMed  Google Scholar 

  45. Noble, S. K. & Pieters, C. M. Space weathering on Mercury: implications for remote sensing. Sol. Syst. Res. 37, 31–35 (2003).

    ADS  CAS  Google Scholar 

  46. Wang, Y. et al. Short-term and global-wide effusive volcanism on Mercury around 3.7 Ga. Geophys. Res. Lett. 48, e2021GL094503 (2021).

    ADS  Google Scholar 

  47. Head, J. W. et al. Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science 333, 1853–1856 (2011).

    ADS  CAS  PubMed  Google Scholar 

  48. Anzures B. A., Parman S. W., Boesenberg J. S. & Milliken R. E. Using volatile (S, C, H, F, Cl) contents of enstatite in reduced meteorites to estimate oxygen fugacity and equilibrium melt compositions. In Proc. 50th Lunar and Planetary Science Conference 2132 (Lunar and Planetary Institute, 2019).

  49. Li, Y., Dasgupta, R. & Tsuno, K. Carbon contents in reduced basalts at graphite saturation: implications for the degassing of Mars, Mercury, and the Moon. J. Geophys. Res. Planets 122, 1300–1320 (2017).

    ADS  CAS  Google Scholar 

  50. Besse, S., Doressoundiram, A. & Benkhoff, J. Spectroscopic properties of explosive volcanism within the Caloris basin with MESSENGER observations. J. Geophys. Res. Planets 120, 2102–2117 (2015).

    ADS  CAS  Google Scholar 

  51. McCubbin, F. M. et al. A low O/Si ratio on the surface of Mercury: evidence for silicon smelting? J. Geophys. Res. Planets 122, 2053–2076 (2017).

    ADS  CAS  Google Scholar 

  52. Namur, O. et al. Sulfur solubility in reduced mafic silicate melts: implications for the speciation and distribution of sulfur on Mercury. Earth Planet. Sci. Lett. 448, 102–114 (2016).

    ADS  CAS  Google Scholar 

  53. Vander Kaaden, K. E. et al. Revolutionizing our understanding of the Solar System via sample return from Mercury. Space Sci. Rev. 215, 1–30 (2019).

    Google Scholar 

  54. Marchi, S. et al. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013).

    ADS  CAS  PubMed  Google Scholar 

  55. Wang, Y., Xiao, Z., Chang, Y. & Cui, J. Lost volatiles during the formation of hollows on Mercury. J. Geophys. Res. Planets 125, e2020JE006559 (2020).

    ADS  CAS  Google Scholar 

  56. Paige, D. A. et al. Thermal stability of volatiles in the north polar region of Mercury. Science 339, 300–303 (2013).

    ADS  CAS  PubMed  Google Scholar 

  57. Rothery, D. A. et al. Rationale for BepiColombo studies of Mercury’s surface and composition. Space Sci. Rev. 216, 66 (2020).

    ADS  Google Scholar 

  58. Clement, M. S., Raymond, S. N. & Chambers, J. E. Mercury as the relic of Earth and Venus outward migration. Astrophys. J. 923, L16 (2021).

    ADS  CAS  Google Scholar 

  59. Hawkins, S. E. et al. The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Sci. Rev. 131, 247–338 (2007).

    ADS  Google Scholar 

  60. Xu, R. Data release: less than one weight percent of graphite on the surface of Mercury. Zenodo https://doi.org/10.5281/zenodo.8286706 (2021).

  61. Barraud, O. et al. Near-ultraviolet to near-infrared spectral properties of hollows on Mercury: implications for origin and formation process. J. Geophys. Res. Planets 125, e2020JE006497 (2020).

    ADS  Google Scholar 

  62. Lucchetti, A. et al. Volatiles on Mercury: the case of hollows and the pyroclastic vent of Tyagaraja crater. Icarus 370, 114694 (2021).

    CAS  Google Scholar 

  63. Holsclaw, G. M. et al. A comparison of the ultraviolet to near-infrared spectral properties of Mercury and the Moon as observed by MESSENGER. Icarus 209, 179–194 (2010).

    ADS  CAS  Google Scholar 

  64. Giacomini, L. et al. Geology of the Kuiper quadrangle (H06), Mercury. J. Maps 18, 246–257 (2022).

    Google Scholar 

  65. Riner, M. A. & Lucey, P. G. Spectral effects of space weathering on Mercury: the role of composition and environment. Geophys. Res. Lett. 39, L12201 (2012).

    ADS  Google Scholar 

  66. Iacovino K. et al. Carbon as the primary driver of super-reduced explosive volcanism on Mercury: evidence from graphite-melt smelting experiments. In Proc. AGU Fall Meeting V23A-01 (2021).

  67. Querry, M. R. Optical Constants (Univ. Missouri, 1985).

  68. Hapke, B. Theory of Reflectance and Emittance Spectroscopy 2nd edn (Cambridge Univ. Press, 2012).

  69. Lucey, P. G. Model near‐infrared optical constants of olivine and pyroxene as a function of iron content. J. Geophys. Res. Planets 103, 1703–1713 (1998).

    ADS  CAS  Google Scholar 

  70. Domingue, D. L. et al. Mercury’s global color mosaic: an update from MESSENGER’s orbital observations. Icarus 257, 477–488 (2015).

    ADS  Google Scholar 

  71. Yang, Y. et al. The effects of viewing geometry on the spectral analysis of lunar regolith as inferred by in situ spectrophotometric measurements of Chang’E‐4. Geophys. Res. Lett. 47, e2020GL087080 (2020).

    ADS  Google Scholar 

  72. Mustard, J. F. & Pieters, C. M. Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. J. Geophys. Res. 94, 13619–13634 (1989).

    ADS  CAS  Google Scholar 

  73. Lucchetti, A. et al. Mercury hollows as remnants of original bedrock materials and devolatilization processes: a spectral clustering and geomorphological analysis. J. Geophys. Res. Planets 123, 2365–2379 (2018).

    ADS  CAS  Google Scholar 

  74. Evans, L. G. et al. Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus 257, 417–427 (2015).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by the National Natural Science Foundation of China (Grant Nos. 42273040, 41773063 and 42241108 to Z.X.) and the B‐type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000 to Z.X.). D. Trang is acknowledged for his suggestions. Y. Yang from the Chinese Academy of Sciences provided suggestions for the radiative transfer model.

Author information

Authors and Affiliations

Authors

Contributions

Z.X. and R.X. both contributed to the conceptualization, visualization, methodology, modelling, analysis and writing of the paper. Y.W. and J.C. joined the discussions.

Corresponding author

Correspondence to Zhiyong Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Christian Huber, Rachel Klima, Brendan Anzures and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Xiao, Z., Wang, Y. et al. Less than one weight percent of graphite on the surface of Mercury. Nat Astron 8, 280–289 (2024). https://doi.org/10.1038/s41550-023-02169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02169-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing