Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Closing the feedback-feeding loop of the radio galaxy 3C 84

Abstract

Gas accretion by a galaxy’s central supermassive black hole (SMBH) and the resultant energetic feedback by the accreting active galactic nucleus (AGN) on the gas in and around a galaxy are two tightly intertwined but competing processes that play a crucial role in the evolution of galaxies. Observations of galaxy clusters have shown how the plasma jets emitted by an AGN heat the intracluster medium, preventing cooling of the cluster gas and thereby the infall of this gas onto the central galaxy. On the other hand, outflows of multiphase gas, driven by the jets, can cool as they rise into the intracluster medium, leading to filaments of colder gas. The fate of this cold gas is unclear, but it has been suggested that it plays a role in feeding the central SMBH. We present the results of reprocessed CO(2-1) Atacama Large Millimeter/submillimeter Array observations of the cold molecular gas in the central regions of NGC 1275, the central galaxy of the Perseus cluster and which hosts the radio-loud AGN 3C 84 (Perseus A). These data show in detail how kiloparsec-sized cold gas filaments resulting from the jet-induced cooling of cluster gas are flowing towards the galaxy centre and how they feed the circum-nuclear accretion disk (100 pc diameter) of the SMBH. Thus, cooled gas can, in this way, play a role in feeding the AGN. These results complete our view of the feedback loop of how an AGN can impact its surroundings and how the effects of this impact maintain the AGN activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Position–velocity plots illustrating the improvement of the data after reprocessing.
Fig. 2: Total intensity image and velocity field of the CO(2-1) in the central regions of NGC 1275.
Fig. 3: Zoom-in of the CO emission and velocity field in the central regions of NGC 1275.
Fig. 4: Position–velocity plots taken along CO(2-1) filaments accreting onto the CND.
Fig. 5: Position–velocity plot of the CO(2-1) emission after integrating the data cube in declination.
Fig. 6: Position–velocity plot along filament B showing local anomalous velocities.

Similar content being viewed by others

Data availability

The calibrated data cube is available from https://astrodrive.astro.rug.nl/index.php/s/g1y6QlCeGFd5XiG, or from the corresponding author on reasonable request.

Code availability

The data were reduced using the publicly available software MIRIAD (ref. 34) and Sofia-2 (ref. 35).

References

  1. Russell, H. R. et al. Driving massive molecular gas flows in central cluster galaxies with AGN feedback. Mon. Not. R. Astron. Soc. 490, 3025–3045 (2019).

    Article  ADS  CAS  Google Scholar 

  2. Fabian, A. C. et al. A wide Chandra view of the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 418, 2154–2164 (2011).

    Article  ADS  Google Scholar 

  3. Pedlar, A. et al. The radio structure of NGC 1275. Mon. Not. R. Astron. Soc. 246, 477 (1990).

    ADS  Google Scholar 

  4. Minkowski, R. Optical investigations of radio sources (introductory lecture). In Proc. Symposium of the International Astronomical Union, Vol. 4 (ed. van de Hulst, H. C.) 107–122 (Cambridge Univ. Press, 1957).

  5. Conselice, C. J., Gallagher, I., John, S. & Wyse, R. F. G. On the nature of the NGC 1275 system. Astron. J. 122, 2281–2300 (2001).

    Article  ADS  CAS  Google Scholar 

  6. Fabian, A. C. et al. Magnetic support of the optical emission line filaments in NGC 1275. Nature 454, 968–970 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Gendron-Marsolais, M. et al. Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety. Mon. Not. R. Astron. Soc. 479, L28–L33 (2018).

    Article  ADS  CAS  Google Scholar 

  8. Hatch, N. A., Crawford, C. S., Fabian, A. C. & Johnstone, R. M. Detections of molecular hydrogen in the outer filaments of NGC1275. Mon. Not. R. Astron. Soc. 358, 765–773 (2005).

    Article  ADS  CAS  Google Scholar 

  9. Lim, J., Ohyama, Y., Yan, C.-H., Ding-V-Trung, & Wang, S.-Y. A molecular hydrogen nebula in the central cD galaxy of the Perseus cluster. Astrophys. J. 744, 112 (2012).

    Article  ADS  Google Scholar 

  10. Salomé, P. et al. Cold molecular gas in the Perseus cluster core. Association with X-ray cavity, Hα filaments and cooling flow. Astron. Astrophys. 454, 437–445 (2006).

    Article  ADS  Google Scholar 

  11. Lim, J., Ao, Y. & Ding-V-Trung, Radially inflowing molecular gas in NGC 1275 deposited by an X-ray cooling flow in the Perseus cluster. Astrophys. J. 672, 252–265 (2008).

    Article  ADS  CAS  Google Scholar 

  12. Ho, I. T., Lim, J. & Ding-V-Trung, Multiple radial cool molecular filaments in NGC 1275. Astrophys. J. 698, 1191–1206 (2009).

    Article  ADS  CAS  Google Scholar 

  13. Fabian, A. C. et al. The energy source of the filaments around the giant galaxy NGC 1275. Mon. Not. R. Astron. Soc. 417, 172–177 (2011).

    Article  ADS  Google Scholar 

  14. Wilman, R. J., Edge, A. C. & Johnstone, R. M. The nature of the molecular gas system in the core of NGC 1275. Mon. Not. R. Astron. Soc. 359, 755–764 (2005).

    Article  ADS  CAS  Google Scholar 

  15. Scharwächter, J., McGregor, P. J., Dopita, M. A. & Beck, T. L. Kinematics and excitation of the molecular hydrogen accretion disc in NGC 1275. Mon. Not. R. Astron. Soc. 429, 2315–2332 (2013).

    Article  ADS  Google Scholar 

  16. Nagai, H. et al. The ALMA discovery of the rotating disk and fast outflow of cold molecular gas in NGC 1275. Astrophys. J. 883, 193 (2019).

    Article  ADS  CAS  Google Scholar 

  17. Salomé, P. et al. Observations of CO in the eastern filaments of NGC 1275. Astron. Astrophys. 483, 793–799 (2008).

    Article  ADS  Google Scholar 

  18. Salomé, P. et al. A very extended molecular web around NGC 1275. Astron. Astrophys. 531, A85 (2011).

    Article  Google Scholar 

  19. Fabian, A. C. et al. Do sound waves transport the AGN energy in the Perseus cluster? Mon. Not. R. Astron. Soc. 464, L1–L5 (2017).

    Article  ADS  CAS  Google Scholar 

  20. Churazov, E., Sunyaev, R., Forman, W. & Böhringer, H. Cooling flows as a calorimeter of active galactic nucleus mechanical power. Mon. Not. R. Astron. Soc. 332, 729–734 (2002).

    Article  ADS  CAS  Google Scholar 

  21. Hatch, N. A., Crawford, C. S., Johnstone, R. M. & Fabian, A. C. On the origin and excitation of the extended nebula surrounding NGC1275. Mon. Not. R. Astron. Soc. 367, 433–448 (2006).

    Article  ADS  CAS  Google Scholar 

  22. Qiu, Y., Bogdanović, T., Li, Y., McDonald, M. & McNamara, B. R. The formation of dusty cold gas filaments from galaxy cluster simulations. Nat. Astron. 4, 900–906 (2020).

    Article  ADS  Google Scholar 

  23. Gaspari, M., Temi, P. & Brighenti, F. Raining on black holes and massive galaxies: the top-down multiphase condensation model. Mon. Not. R. Astron. Soc. 466, 677–704 (2017).

    Article  ADS  CAS  Google Scholar 

  24. Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Ann. Rev. Astron. Astrophys. 51, 207–268 (2013).

    Article  ADS  CAS  Google Scholar 

  25. Bregman, J. N., Fabian, A. C., Miller, E. D. & Irwin, J. A. On VI observations of galaxy clusters: evidence for modest cooling flows. Astrophys. J. 642, 746–751 (2006).

    Article  ADS  CAS  Google Scholar 

  26. Holtzman, J. A. et al. Planetary camera observations of NGC 1275: discovery of a central population of compact massive blue star clusters. Astron. J. 103, 691 (1992).

    Article  ADS  Google Scholar 

  27. Lim, J., Wong, E., Ohyama, Y. & Yeung, M. C. H. Recent formation of a spiral disk hosting progenitor globular clusters at the center of the Perseus brightest cluster galaxy. II. Progenitor globular clusters. Astrophys. J. 927, 138 (2022).

    Article  ADS  Google Scholar 

  28. Nagai, H. et al. VLBI Monitoring of 3C 84 (NGC 1275) in early phase of the 2005 outburst. Publ. Astron. Soc. Jpn 62, L11 (2010).

    Article  ADS  Google Scholar 

  29. Kino, M. et al. Morphological transition of the compact radio lobe in 3C 84 via the strong jet–cloud collision. Astrophys. J. Lett. 920, L24 (2021).

    Article  ADS  CAS  Google Scholar 

  30. Hogan, M. T. et al. A comprehensive study of the radio properties of brightest cluster galaxies. Mon. Not. R. Astron. Soc. 453, 1201–1222 (2015).

    Article  ADS  CAS  Google Scholar 

  31. O’Dea, C. P., Dent, W. A. & Balonek, T. J. The 20 year spectral evolution of the radio nucleus of NGC 1275. Astrophys. J. 278, 89–95 (1984).

    Article  ADS  Google Scholar 

  32. Dutson, K. L. et al. A non-thermal study of the brightest cluster galaxy NGC 1275 – the gamma-radio connection over four decades. Mon. Not. R. Astron. Soc. 442, 2048–2057 (2014).

    Article  ADS  Google Scholar 

  33. Paraschos, G. F. et al. A multi-band study and exploration of the radio wave-γ-ray connection in 3C 84. Astron. Astrophys. 669, A32 (2023).

    Article  CAS  Google Scholar 

  34. Sault, R. J., Teuben, P. J. & Wright, M. C. H. A retrospective view of MIRIAD. ASP Conf. Ser. 77, 433–436.

  35. Westmeier, T. et al. SOFIA 2 – an automated, parallel H i source finding pipeline for the WALLABY survey. Mon. Not. R. Astron. Soc. 506, 3962–3976 (2021).

    Article  ADS  CAS  Google Scholar 

  36. Lim, J., Dinh-V-Trung, Vrtilek, J., David, L. P. & Forman, W. The role of electron excitation and nature of molecular gas in cluster central elliptical galaxies. Astrophys. J. 850, 31 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is based on reprocessing of the ALMA observations carried out under project number 2017.0.01257.S and which were published in original form by Nagai et al.16.

Author information

Authors and Affiliations

Authors

Contributions

T.O. and R.M. conceived the project. T.O. reduced the data. T.O., R.M. and S.M. carried out the analysis and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Tom Oosterloo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Alastair Edge and Jeremy Lim for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oosterloo, T., Morganti, R. & Murthy, S. Closing the feedback-feeding loop of the radio galaxy 3C 84. Nat Astron 8, 256–262 (2024). https://doi.org/10.1038/s41550-023-02138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02138-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing